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A STOCHASTIC APPROACH TO ENTANGLEMENT DYNAMICS

OF QUBIT SYSTEMS

ABSTRACT

The study of open quantum systems becomes crucial to understanding entanglement

dynamics of two-level systems: no qubits are truly isolated from their surroundings.

Local noisy environments inevitably cause the fast decoherence and disentanglement

of qubits, a key hindrance in realizing the promising applications in quantum com-

puting and quantum communication. In this thesis, the evolution of bipartite en-

tanglement in the presence of noise is studied for two very fundamental systems:

(1) two spatially separated qubits interacting with their local environment, a basic

model of quantum communication, and (2) two uncoupled qubits interacting with a

common environment, most relevant for qubits in quantum computing. Both models

are fundamental for understanding the interworking of entangled qubits as they lose

amplitude and phase information about their quantum state to the environment.

First, by taking advantage of the nonlocality of entanglement, a statistical cor-

relation is introduced between the local noisy environments of distant qubits, causing

the qubits to perceive themselves in a common environment where entanglement is

preserved for a wide range of initial states. It will be shown that bipartite entan-

glement can in fact be modulated by correlated local noise for both dephasing and

dissipative fields and the conditions for providing a full statistical correlation in the

non-Markovian regime will be explored. Secondly, for the first time the dynamical

equations for two qubits in a common environment are solved for exactly in the de-

phasing and dissipative cases, shedding much light on what conditions are optimal for

maintaining a high level of entanglement, such as symmetry of the qubits and memory
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of the environment. Lastly, the fast-tracking of entanglement will be discussed for the

first time with respect to non-Markovian systems. It is proposed that calculating the

average entanglement evolution over individual trajectories of the qubits, which are

stochastic due to fluctuations from the noise, can provide a reasonably good indica-

tion for the general trends of the actual entanglement as an upperbound. For certain

initial states, the mean entanglement trajectories predicted an almost identical evo-

lution of the exact entanglement, making it extremely useful for future approximate

calculations of very complex multipartite systems.
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Chapter 1

Introduction

More than a century ago, the emergence of quantum theory shook the foundation of

physics, which continues to reverberate today. One of the defining factors that truly

separates the quantum realm from what is witnessed in classical physics is the intrin-

sic correlation between quantum particles known as entanglement. Stretching from

popular science to the forefront of new technology, entanglement theory has spawned

an abundance of profound applications and esoteric interpretations, shattering the

common view of what is scientifically possible. Although the formalism for studying

entanglement has developed into many beautiful complex techniques, the root of this

phenomenon lies at the very center of quantum theory.

1.1 Closed Quantum Systems

In the general framework of quantum mechanics, the probabilistic description of the

state of a system is contained in the wavefunction, |Ψt〉, which dynamically evolves

through time according to the standard time-dependent Schrödinger Equation,

i~
∂ |Ψt〉
∂t

= ĤSys |Ψt〉 . (1.1)

The energy information about the system is contained in the Hamiltonian operator,

ĤSys, which acts on the state vector |Ψt〉 and extracts the dynamical properties of the

system. The beauty of Schrödinger’s Equation is that such a concise equation has the

ability to describe an extremely large system consisting of thousands of particles or

simply that of a single object. The main focus of this work is on two-level quantum
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particles, often termed a ”qubit” for its potential to serve as a quantum bit in the

highly anticipated quantum computer [1]. The most common two-level systems are

the ground and excited electronic energy levels of an atom, |g〉 and |e〉, or the spin

states of a spin-1
2

particle, |+〉 and |−〉, the latter being the general model system

adopted in this report.

If the system of interest is essentially isolated from all other external factors,

this type of closed quantum system typically follows a unitary evolution, facilitating

a trivial solution to equation (1.1) of the form1

|Ψt〉 = e
−i
~

∫ t
0 dt
′ĤSys(t

′) |Ψ0〉 , (1.2)

This type of system dynamics have been studied extensively [3, 4, 5], divulging such

unique properties as superposition states and quantum coherence, which are unfamil-

iar to the classical world. For instance, the quantum-mechanical state of a single spin

in a closed system exists in a superposition of both energy levels and is represented

by the pure state

|Ψ〉 = a |+〉+ b |−〉 , (1.3)

where |a|2 is the probability of being in the spin-up state |+〉 and |b|2 is the probability

of being in the spin-down state |−〉. Because the qubit is isolated from all other

factors, the wavefunction will follow a fixed evolution according to the Schrödinger

Equation (1.2), in which it will remain in the pure superposition state throughout

time. An analogous representation of this closed system is via the density operator,

ρ = |Ψ〉 〈Ψ|, expanded as:

ρ =

 |a|2 a∗b

ab∗ |b|2

 . (1.4)

1if ĤSys commutes with itself at all mixed time points [2].
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The diagonal elements reflect the probability of being in one of the distinct spin states

and the off-diagonal elements demonstrate the unique possibility for this particle to

exist in both states at once. This quantum interference between states is known as

coherence and is unparalleled in the classical world. Furthermore, extending this

concept to multiple qubits brought quantum theory to a whole new level.

The fact that a wavefunction describing many quantum objects can also exhibit

coherence between energy states is fascinating in its own right. For example, suppose

there are two qubits A and B whose wavefunction spans the combined Hilbert space

HA ⊗HB. The composite two-qubit state takes the general form:

|ΨAB〉 = a |++〉AB + b |+−〉AB + c |−+〉AB + d |−−〉AB , (1.5)

reflecting all of the possible spin combinations that the two qubits can exist in. The

ensemble of this system is then represented by the density matrix

ρAB = |ΨAB〉 〈ΨAB| =



|a|2 a∗b a∗c a∗d

b∗a |b|2 b∗c b∗d

c∗a c∗b |c|2 c∗d

d∗a d∗b d∗c |d|2


, (1.6)

where the off-diagonal elements now reflect the quantum interference between the

two-qubit states. Elements on the anti-diagonal quantify the ability for both qubits

to exhibit single-qubit coherence, and the other off-diagonal elements reflect the pos-

sibility that one qubit is in a superposition state while the other is in a single spin

state. The startling factor is that in all of the details contained in this description of

quantum coherence, not once was it necessary to consider the position of the particles.

This implies that uncoupled quantum objects can have a strong correlation even if
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they are on opposite ends of the universe. From this arose the notion of quantum

entanglement, where for some quantum systems it is impossible to know full infor-

mation about one particle without the knowledge of its entangled counterpart. This

immediately sparked the field of quantum information science and made entanglement

extremely valuable to harness.

Both coherence and entanglement strongly persist within a closed bipartite

system, such that two noninteracting entangled qubits will remain entangled indef-

initely. Moreover, if you expand the system to include multiple particles, they too

will become highly entangled with the rest of the system, however at the expense

of a lesser degree of entanglement between the two original qubits of interest. For

that reason, entanglement becomes extremely vulnerable to factors external to the

closed system, such as electromagnetic radiation consisting of very many photons,

the general makeup of the device that the qubits are in having many vibrational

modes, and especially the apparatus of measurement used to probe the qubits. In

fact, it is quite rare that two qubits will be found completely isolated from any type

of external disturbance and will almost always experience the fast decoherence and

disentanglement due to the dissipation of energy [6]. It then becomes necessary to

include the environment as part of the total system in order to appropriately describe

the entanglement dynamics of the qubits [7, 8, 9, 10].

1.2 Open Quantum Systems

An open quantum system [11] spans the expanded Hilbert space, HS ⊗ HEnv, en-

compassing a system of interest, the qubits, which are either embedded in or part

of a much larger system, refered to here as the environment. The interaction be-

tween the system and environment then allows for the transfer of energy and phase
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information, causing a fluctuation in the dynamics of the qubits as they attempt to

equilibrate themselves with their surroundings. The energy of the open quantum

system is represented by the total Hamiltonian operator

ĤTot = ĤSys + ĤEnv + ĤInt, (1.7)

which manifests the large influence the environment has on the dynamics of the

qubits via their interaction, ĤInt. The total state of the open quantum system can

be expanded in a combined basis of the system {αSi } and environment {βEnvj }, such

that

|ΨTot(t)〉 =
∑
ij

cij(t) |αSi 〉 ⊗ |βEnvj 〉 , (1.8)

where it becomes apparent that the system is now completely intertwined with the

environment. Although this total state |ΨTot〉 will undergo a unitary evolution ac-

cording to the time-dependent Schrödinger Equation (1.1)

i~
∂ |Ψtot〉
∂t

= (ĤSys + ĤEnv + ĤInt) |Ψtot〉 , (1.9)

the state of the qubits will no longer remain in a pure state as it did in the closed

system. Due to the exchange of energy with the environment, the qubits have the

possibility of evolving along various paths, resulting in an ensemble of states that is

considered mixed. Such a mixed state implies that only partial information is known

about the system, making it necessary to use the density matrix to properly describe

the state of the system,

ρS =
∑
i

pi |ψi〉 〈ψi| , (1.10)
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having a distribution of probabilities pi for being in possible pure state |ψi〉. In

effect, the state of the qubits is a mathematical reduction of the Hilbert space of the

total open quantum system to only include the system degrees of freedom, therefore

averaging over all environmental factors, and is appropriately named the reduced

density operator such that

ρS = TrEnv [|Ψtot〉 〈Ψtot|] . (1.11)

The dynamical equation governing the reduced density matrix is known as the master

equation, which normally takes the standard form [4]

ρ̇S =
−i
~

[ĤSys, ρS] + L(ρ). (1.12)

The first term of the right-hand side clearly describes the free evolution of the qubits,

making the essence of the master equation to define the super-operator L which

encompasses all of the dissipation and fluctuating dynamics of the qubits in the open

quantum system. The many techniques for deriving the reduced dynamics of the

qubits will be presented in Chapter 2. Above all, from the evolution of the quantum

state of the qubits comes the powerful knowledge of the entanglement dynamics of

the model system.

1.3 Entanglement

1.31 Entanglement of Pure States

Although the idea of superposition states and quantum coherence were not the sim-

plest notions to digest, there was enough evidence to validate these aspects of quantum

theory, for instance in the photoelectric effect and Young’s double slit experiment.
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It was the nonlocality of the quantum interference between multipartite states that

did not sit well with many. Once known as ”spukhafte Fernwirkung” by Einstein,

or the ”spooky action at a distance,” the idea of the nonlocal quantum correlation

originated in a thought experiment put forth by Einstein, Podolsky, and Rosen as

a way to show that quantum theory was incomplete [12]. The strange behavior de-

scribed in the EPR paradox is such that a measurement taken on qubit A instantly

reveals information about the quantum state of qubit B, even if system B was far

enough away that the information traveling at the speed of light would reach that

system much later than our ability to obtain knowledge of it. Before simply terming

this type of state as unphysical, it was Schrödinger who argued that there is no true

violation at hand and that the state is perfectly valid according to the superposition

principle [5]. It was he who described such a state as ’entangled’, directly referring

to the fact that such a state could not be separated into two constituents represented

by a tensor product, |ψ〉AB = |ψA〉⊗ |ψB〉, known as a separable state. This state has

the property that any measurement on system A would infer absolutely no informa-

tion about system B, making them statistically independent states. Therefore, any

composite two-qubit state that cannot be written as a separable tensor product must

then be an entangled state.

In general, a vector in the composite space HA⊗HB, having finite dimensions

dA and dB respectively, can be expanded as

|φAB〉 =
r∑
i=1

gi |iA〉 ⊗ |iB〉 (1.13)

where {|iA〉} and {|iB〉} are orthonormal sets in subspace A and B, respectively, and

the coefficients gi are non-negative scalars which uniquely determine vector |φAB〉.

This general theory in linear algebra is known as the Schmidt Decomposition of
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vector |φAB〉 and provides much insight when applied to a bipartite quantum system

[5]. When r = 1, all but one of the constants gi is non-zero and the state vector is

clearly separable into a tensor product such that

|φAB〉 = gj |jA〉 ⊗ |jB〉 . (1.14)

Moreover, if 1 < r ≤ min(dA, dB), the state can no longer be written as a tensor

product state. We can therefore define an entangled state as any vector whose Schmidt

rank, r, is greater than one.

From the definition of an entangled state as one which is not separable, it is

apparent that there will be some states that exhibit a stronger quantum correlation

between subsystems than others. How the degree of entanglement evolves in time

becomes an important insight for the study of quantum systems, so defining a physi-

cally relevant measure of entanglement is crucial. All measures of entanglement must

satisfy certain criteria [13], such that (1) the entanglement of independent systems

is additive, (2) entanglement is conserved under a unitary transformation, (3) entan-

glement cannot be enhanced through any local operations on a subsystem, and (4)

entanglement can be concentrated and diluted with unit asymptotic efficiency. For a

pure state |ψ〉 describing a bipartite system that spans the combined Hilbert space

HA⊗HB, the degree of entanglement is measured by the entropy of entanglement [13],

E(ψ) = S(ρA) = S(ρB), where S(ρ) = −Tr{ρ log ρ} is the von Neumann entropy and

ρA and ρB are the reduced density matrices after taking a partial trace over the other

subsystem’s degrees of freedom, ρA = TrB{|ψ〉 〈ψ|} and ρB = TrA{|ψ〉 〈ψ|}. This en-

tropy of entanglement measures E = 0 for a separable state ψ = ψA⊗ψB and E = 1

for a maximally entangled state, such as the singlet state ψ = 1√
2

(|+−〉 − |−+〉).

From this definition, it is clear that the entropy of entanglement is a property
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of the ensemble state of the system. For this reason, when referring to the pure state

evolution of two qubits in a closed quantum system, it is likely that all trajectories

of the system follow along a uniform evolution, making its entanglement dynamics

definable as a real-time measurement. In contrast, for a pair of qubits under the

random effects of an external environment, their ensemble state represents a mixture

of outcomes. Therefore, the interpretation of entanglement changes for qubits in an

open quantum system and the calculation of entanglement of a mixed state must be

treated in a different way.

1.32 Entanglement of a Mixed State

The nature of mixed state entanglement stems from the notion that a mixed state ρ,

as in equation (1.10), can be unravelled into various pure-state decompositions, ψi,

for which the measure of entanglement is calculable [13]. By then minimizing over all

of the possible decompositions of the density matrix, a lowerbound is quantified for

the amount of entanglement that is available to that ensemble system. For instance,

Terhal and Horodecki [14] defined the Schmidt number, rS(ρ), as the lowest Schmidt

rank, r, minimized over all possible unravellings of the density matrix,

rS(ρ) = min {maxi [r(ψi)]} . (1.15)

Analogously, Bennett, DiVincenzo, Smolin, and Wootters defined the entanglement

of formation as the average entanglement of pure states minimized over all decompo-

sitions of ρ [13],

E(ρ) = min
∑
i

piE(ψi). (1.16)

The entanglement of formation satisfies all of the necessary conditions to be considered

a valid measurement of entanglement, however has the major drawback of being
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difficult to calculate. Wootters set out to define a measurement of entanglement that

is equivalent to the entanglement of formation, but is less computationally exhaustive

[15, 16].

For a pure or mixed bipartite state represented by ρ, E(ρ) = E(C(ρ)), where

C(ρ) = Max{0, λ1−λ2−λ3−λ4} is known as the Concurrence [16] and ranges from

zero to one, zero pertaining to a separable state and one a maximally entangled state.

Here, λi are non-negative real numbers for the square root of the eigenvalues of ρρ̃

in descending order where ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy) represents the spin flip state.

The function of Concurrence, E(C), is equal to the entanglement of formation and

calculated as E(C) = h
(

1+
√

1−C2

2

)
where h is the binary entropy function, h(x) =

−x log x− (1−x) log(1−x). Because the concurrence, C(ρ), ranges from zero to one

and is monotonically related to the entanglement of formation, it in itself is regarded

as a measurement of entanglement and will be used throughout the remainder of the

thesis because of its ease of calculation.

1.4 Applications based on Entanglement

At the forefront of new technology is the use of entangled qubits to perform faster

operations that are known to us classically as well as completely new phenomena

stemming from the nuances of quantum theory [17, 18, 19, 20, 21, 22, 23, 1, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34]. In all proposed applications, a robust entanglement

between the qubits is essential but is inevitably faced with the decoherence properties

of the noisy environment in its surroundings. Here are a few major applications for

which the study of open quantum systems becomes crucial.
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1.41 Quantum teleportation

Much of quantum communication relies on sending information stored in a quantum

state through a quantum communication channel that is subject to many noise factors

[1]. In the case of quantum teleportation, quantum information is conveyed by simply

sending classical messages between the communicators. Suppose two collaborators,

Alice and Bob, at opposite ends of the world share a maximally entangled pair of

qubits, each having one qubit in possession. The advantages of entanglement are

already relevant such that when Alice measures her qubit she automatically knows the

state of Bob’s qubit without even having to measure it. Taking this phenomenon one

step further, if Alice interacts her qubit with yet another arbitrary qubit, existing in its

own superposition state |ψ〉 = α |+〉+β |−〉, Alice can measure both qubits and send

that information classically to Bob. Based on that classical message received, Bob can

accordingly make a measurement of his qubit and recover the original information of

the superposition state of the arbitrary qubit. What is more, the quantum information

was transferred to Bob across a great distance without wires and signals, as would

be needed for a classical communication. It’s as if the original quantum information

stored in the superposition state of the third qubit has been teleported.

Without a robust control over entanglement, quantum teleportation becomes

nearly impossible. The main problem occurring in this scheme is local noise acting on

each qubit, which is known to irrevocably destroy entanglement. In Chapters 3 and

4, it is proposed that a statistical correlation between the noisy environments can in

fact enhance the entanglement between distant qubits.
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1.42 Quantum Cryptography

In all of the aforementioned scenarios, the fight against decoherence from external

sources is eminent. This includes the fundamental idea that there exists no measure-

ment which does not effect the quantum state it is measuring. In reality, this fact

becomes extremely beneficial in terms of securing quantum communication channels

[1]. The transfer of secure information generally relies on a shared key between com-

municators, which can be used to encode and decode messages. However, it is highly

possible that an eavesdropper can obtain that key and gain access to the no-longer-

secure information. Much doubt arises in how one can be sure that a communication

channel is safe enough to send the key in the first place.

Suppose now that the two communicators, Alice and Bob, share a large number

of EPR pairs, all having quantum state |ψ〉 = 1√
2
{|00〉 + |11〉}, where the notation

of basis kets |0〉 and |1〉 generally alludes to binary code and the use of qubits in

quantum computing. Alice can perform a measurement on her half of the shared

qubits, revealing a string of zeroes and ones, which instantly collapses the quantum

mechanical state of Bob’s qubits into the same set of numbers. They can then compare

their string to ensure that the quantum channel is clear. If, however, there is an

eavesdropper trying to make a measurement of Alice’s qubits and compromising the

security of the channel, that measurement would subsequently change the quantum

mechanical state of the qubit and cause Bob to produce a different string of numbers

than what Alice originally found. Alice and Bob can then continue this procedure

until they have verified the channel is secure and send their key. In quantum key

distribution, the quantum measurement would uniquely act as a fail-proof way to

identify unsafe communication, as long as the entanglement between the original

EPR pairs can persist long enough.
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1.43 The Quantum Computer: Qubits realized

The ability to simultaneously have information about multiple entangled qubits by

simply measuring one qubit instantly sparked the idea of creating a computer based

on quantum mechanics [1]. The substantial motivation for realizing the quantum

computer is because of its promise for certain quantum algorithms to be exponentially

faster than its classical analogue. By storing many pieces of classical information

in a collection of entangled qubits, it can essentially be processed all at once by

manipulating only a single qubit, all because of the coherent nature of the quantum

state. This type of parallel computing, known as superdense coding [35], improves

on many classical algorithms which tend to be very exhaustive, such as the quantum

search algorithm [36] and the factoring of large prime numbers, a task that could

greatly challenge cryptographic security schemes. While the motivation for building

a working quantum computer is clear, there are many hindrances which stand in the

way of this realization.

At the heart of the quantum computer is the assumption that the qubits remain

in an entangled state long enough to perform the necessary quantum logic gates that

make up a functioning quantum information processor. The three main components

of a successful quantum operation are (1) preparation of the initial entangled state,

(2) manipulation of a single qubit as well as multiple qubits without losing their

coherent properties and (3) obtaining a readout of the final qubit state to be used

as computer logic. There have been groundbreaking technologies that demonstrate

great promise for the realization of the quantum computer, a few of which are named

here.

Photon qubits are very useful in quantum computing due to the reasonable

amount of control over them using optical fibers, beam splitters, and phase shifters.
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The optical quantum computer makes use of the paired polarization states of the

photon as a realization of a two-state quantum bit, such as horizontal and vertical

polarization or clockwise and counter-clockwise circular polarization. In another man-

ner, quantum computing based on cavity quantum electrodynamics (QED) utilizes

the photon modes of an optical cavity as the superposition state used to store infor-

mation [17, 33, 34]. One drawback for the mainstream use of this type of quantum

computer is that scaling and making identical replications of this kind of qubit are

quite difficult.

Another type of qubit is realized in the nuclear spin state of trapped ions

[20, 19, 27], confined in space using electromagnetic fields and cooled so that the

kinetic energy of the charged atom is much less than the hyperfine spin energy levels

of the nucleus. Nuclear spins are strongly coupled through chemical bonds of the

atoms and can be easily probed with monochromatic light to allow for active control

of the qubit information. Although the techniques needed to manipulate nuclear spin

qubits have been highly developed in the field of NMR spectroscopy, it is still very

difficult to get an accurate readout signal because of noise.

Last, superconducting qubits provide a large benefit as a prototype of quantum

computing because of its ready scalability [22, 21, 23, 24, 29, 25, 26, 28, 32, 31].

Given two superconducting islands linked through a Josephson junction, quantum

information can be stored in a charge qubit [23, 22, 28, 29, 25], where one island either

has no net charge or an excess of charge due to the tunneling of a Cooper pair. In

another model, superconducting loops are used whose current is controllable through

an external flux, making the direction of the current what defines this flux qubit

state [21, 31]. The major hindrance that holds back this technology from mainstream

application is the very dense environment that generally makes up superconductor

devices, which greatly affects the coherent properties of the qubits. Ultimately, in all
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of the aforementioned open quantum systems, the common threat is the decoherence

and disentanglement of the qubit state due to noisy environments.

1.5 Decoherence and Disentanglement in Open Quantum Systems

The vulnerability of coherence and entanglement in open quantum systems is simply

the reaction of a very small system becoming overwhelmed by a much larger envi-

ronment. The strong coherent properties known to two isolated qubits quickly decay

as the qubits adjust to being a part of a larger whole. In mathematical terms, pure

decoherence caused by fluctuations in the spacing of the qubit energy levels is marked

by the decay of the off-diagonal elements in the reduced density matrix,

ρS(t) =

 |a|2 a∗be−Γt

ab∗e−Γt |b|2

 , (1.17)

where Γ represents the decoherence rate. Once diagonal, ρS contains only the classical

sampling between two distinct states with no potential for a superposition. The

timescale of full decoherence is τdec = 1
Γ

and depends on the specific model at hand

and the type of decoherence mechanism.

A dephasing type of qubit-environment interaction results in the pure deco-

herence of the qubit state without any type of population transfer. In work by T. Yu

and J. H. Eberly [37, 38], it was shown that the single-qubit dephasing time is always

shorter than or equal to the two-qubit decoherence time, reflecting a cascade of ef-

fects within the decoherence mechanism. Phase noise typically causes the asymptotic

decay of entanglement for qubits initially in an entangled pure state, however it was

shown that disentanglement can occur faster than full two-qubit decoherence in some

cases.
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A dissipative type of interaction, resulting in the population transfer of the

qubit states, is known to pose the strongest opposition to entanglement [39]. Most

notably, amplitude noise causes qubits in a pure entangled state to disentangle in

a finite time, coined as the sudden death of entanglement by Yu and Eberly [39,

10, 40, 41, 42]. This abrupt loss of control over entanglement has been witnessed

experimentally by Almeida et al. [43], demonstrating the true hindering nature of

dissipation.

It is quite valuable to theoretically analyze the entanglement dynamics of two-

qubits within an open quantum system in order to understand the most beneficial

scenarios for maintaining the coherent properties of the qubits. In the following

chapters, many fundamental models will be analyzed under various environmental

conditions with the aid of many well-developed theoretical techniques.
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Chapter 2

Techniques

When treating a quantum mechanical problem in an open quantum system frame-

work, the challenge arises in isolating the dynamics of the system of interest in order

to highlight the entanglement of the qubits, as well as other properties of the system

alone. The total Hamiltonian of the open quantum system expanded from Eq. (1.7)

for any qubit system interacting with a bosonic bath is [4]

ĤTot = ĤSys + ĤEnv + ĤInt

= ĤSys +
∑
λ

ωλa
†
λaλ +

∑
λ

(
g∗λLa

†
λ + gλL

†aλ

)
. (2.1)

This Hamiltonian operator holds true for any number of qubits described by ĤSys

in the presence of a radiation field modeled as a collection of very many harmonic

oscillators, each having a transition frequency ωλ and the annihilation and creation

operators that obey the commutation relation [aλ, a
†
λ] = 1. The essence of the model is

contained in how the qubits interact with the environment via the Lindblad operator,

L. Initially, the qubits are taken to interact with each and every mode of the radiation

field with a specific coupling strength gλ, however it will be shown that the collective

effect of the environment on the system will be stochastic in nature.

Distinguishing the dynamics of the qubits from that of the total quantum sys-

tem is at the core of theoretical problems dealing with open quantum systems. The

evolution of the total wavefunction |ΨTot(t)〉 is known from the classic Schrödinger

equation approach in (1.9), facilitating a dynamical equation for the ensemble state

of the open system, ρTot(t) = |ΨTot(t)〉 〈ΨTot(t)|. It is then natural to trace out
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all environmental degrees of freedom in order to isolate the system dynamics alone,

known as the reduced density matrix ρS(t) = TrEnv{ρTot(t)}, which is essential for

the calculation of the qubit entanglement. Furthermore, resolving the time evolution

for ρS(t) allows for the calculation of qubit entanglement in a dynamic way, revealing

much insight into the diffusive effects of a noisy environment on bipartite entangle-

ment over time. Although there is no universal way of deriving the reduced density

operator dynamics for all models, many useful methods have been developed. Some

successful techniques with which many important models have been solved are the

Feynman-Vernon Integral [11], projection operator techniques [2], Kraus operators

[44], the master equation [45], and the quantum trajectory technique [46]. The latter

two techniques are the the main focus here.

2.1 Master Equation

The most intuitive way to resolve the dynamics of the reduced density matrix is to

simply derive a differential equation for it, called the master equation, which takes

the general form

ρ̇S =
−i
~

[ĤSys, ρS] + L(ρ), (2.2)

where the commutator contains the free unitary evolution of the system and the

superoperator L contains all information about amplitude and phase damping from

environmental factors. The task of deriving the explicit form of the L operator is

known to be extremely challenging for most complex systems, and as of yet does

not exist for general non-Markovian environments. In actuality, there are only a few

conditions which allow for an exact master equation to be derived.

For environments with a very short memory of past times, the Markov approx-

imation becomes relevant [47]. It states that the value of the environmental noise
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at present time has no correlation to its past values, making the bath correlation

function simply a sharply peaked delta-function. It was Lindblad who showed that if

a linear master equation is Hermitian, preserves probability, has constant coefficients

pertaining to its Markovian nature, and preserves positivity, it can always be written

in the form [48, 49]

ρ̇S = − i
~

[ĤSys, ρS] +
∑
j

(
LjρSL

†
j −

1

2
L†jLjρS −

1

2
ρSL

†
jLj

)
. (2.3)

This master equation is extremely powerful for describing the non-unitary evolution

of qubits in a Markov environment and has become a standard for solving problems in

many areas. For some special cases in the Markov regime, the solution to the master

equation can be developed from Kraus operators [44], Km,:

ρS(t) =
∑
m

K†mρS(0)Km, (2.4)

where
∑

mKmK
†
m = 1. The simplest case is when the system dynamics are contained

within a single Kraus operator, representing the unitary evolution of the system.

When the coupling between the system and environment is very weak, the

Born approximation becomes relevant, allowing the system to be treated separately

from the environment throughout time, ρTot(t) = ρS(t)⊗ρEnv. Applying this approx-

imation gives rise to the Redfield master equation, which is applicable for general

bath correlation functions, even those in the non-Markovian regime. Beyond the

Born approximation, there does not exist a viable master equation that generally ac-

counts for exact memory effects for all models. The study of non-Markovian systems

has become of great interest for photonic band-gap materials [30], quantum dots [50],

atom lasers [51], and general non-Markovian quantum information processing [52, 53].
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Therefore, techniques which bypass the need to derive the master equation become a

very powerful tool, specifically the non-Markovian quantum trajectory technique.

2.2 Quantum Trajectory Technique

The second approach mentioned here takes advantage of the statistical nature of the

qubits in the presence of the environment, which can be viewed collectively as simply a

source of noise. It was shown that the reduced density operator can be unravelled into

a collection of stochastically driven quantum state vectors, |ψt(z)〉, which live in the

state space of the system and on average reconstruct the master equation dynamics,

ρS(t) = M [|ψt(z)〉 〈ψt(z)|], where M [·] denotes the statistical average over all possible

realizations of the noise. Here, |ψt(z)〉 represents a single quantum trajectory of the

pure state dynamics of the system under the influence of environmental noise, zt. To

put this into practice, the stochastic effects of noise on the evolution of this quantum

state is contained in the Quantum State Diffusion (QSD) Equation developed by

Gisin and Percival [7] and used countless times to resolve the qubit dynamics of

many fundamental models [7, 54, 8, 55, 52, 56]. Under the conditions that the initial

state of the open quantum system is in a separable state, ρTot(0) = ρS(0)⊗ ρEnv(0),

and the environment is at zero temperature, the explicit form of the QSD Equation

for a general set of qubits is

∂ |ψt(z)〉
∂t

= −iĤSys |ψt(z)〉+ Lzt |ψt(z)〉 − L†
∫ t

0

dsM [z∗t zs]
δ |ψt(z)〉
δzs

(2.5)

where L is the Lindblad operator describing the type of diffusive nature caused by

the system-environment interaction and zt is a complex Gaussian process satisfying

M [zt] = 0 and M [ztzs] = 0. The right hand side of Eq. (2.5) breaks down as the free

unitary evolution of the system, the qubit interaction with the noisy environment, and
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the effects of environmental memory on the system. The memory of the environment

is contained in the bath correlation function, M [z∗t zs] ≡ α(t, s), which quantifies how

much the noise at time t depends on its values at past times s. It will be shown that

various types of noise will have a significant effect on the dynamics of the qubits.

2.21 Noise and Environment Correlation Functions

Considering the quantization of electromagnetic radiation, the environment is mod-

eled as a collection of a large number of harmonic oscillators, each interacting with

the qubits in an ever-changing way. Instead of exactly accounting for each individual

interaction between qubit and harmonic oscillator, the collective effect of the envi-

ronment is taken into account, which is naturally quite random and represented by a

Gaussian noise variable, zt. In some cases, the environment is treated as as a classical

field, for which the noise will be a real-valued variable. In other cases, the environment

is fully quantized and the noise can be complex. Aside from satisfying the Gaussian

distribution conditions, such that the mean of the noise is zero and the variance of

the noise is one, the noise can also be characterized by its correlation function. In the

case of white noise, the environment has no memory of past times and has an auto-

correlation function that will only be nonzero at present time t, M [z∗t zs] = Γδ(t− s),

where Γ is the dissipation rate for amplitude noise or the dephasing rate for phase

noise. This correlation function is representative of the Markov regime for which the

correlation time of the environment is so short that memory effects can be ignored.

In the case of non-Markovian noise, the current value of environmental noise depends

on its past values, therefore adding memory effects to the dynamics of the total sys-

tem. There are two common types of non-Markovian noise taken into account in this

thesis.
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Ornstein-Uhlenbeck Noise

The Ornstein-Uhlenbeck process was first introduced by Langevin to describe the

velocity of a Brownian particle in a frictional substance [57, 58]. In general, it is quite

useful for modeling a continuous random process which drifts toward a stationary

long-term mean. Computationally, it has the benefit of the following closed-form

description:

z(t+ dt) = z(t)− 1

τ
z(t)dt+ c1/2N(t)(dt)1/2 (2.6)

where τ is the relaxation time, c is the diffusion constant, and N(t) is a normal

random variable. Ornstein-Uhlenbeck noise, although random, is affected by the

relaxation mechanism, making future values depend on previous values, expressed in

the autocorrelation function

M [z∗t zs] =
Γγ

2
e−γ|t−s|, (2.7)

where s represents a time in the past. Here, Γ is the dissipation or dephasing rate

of the system, depending on the type interaction mechanism, and γ determines the

correlation time of the noise, τcorr =
1

γ
, and in turn controls the memory of the

environment. For very small γ, non-Markovian effects become very prominent and

will show to have a large influence on entanglement dynamics in Chapters 4 and

5. As γ becomes large, the effects of memory become weaker, approaching the au-

tocorrelation function M [z∗t zs] = Γδ(t − s), reflecting Markov noise. The use of

Ornstein-Uhlenbeck noise is extremely advantageous for viewing the transition from

non-Markov to Markov regimes. For many practical problems for which the accurate

numerical simulation of the noise is difficult, the noise variable can be approximated

as a collection of many Ornstein-Uhlenbeck noises, α(t−s) = α1(t−s)+α2(t−s)+ ...,



23

as an application of the central limit theorem [59].

Temperature-Dependent Noise

In the most realistic case, a major challenge to bipartite entanglement is noise from

finite temperature reservoirs [60, 61, 62, 63, 37, 64, 65]. Bose et al. have demonstrated

that a single qubit will become strongly entangled with a large thermal field [66, 60],

implying a distraction from qubit-qubit entanglement in a finite temperature heat

bath. A general temperature dependent bath correlation function in the continuous

frequency domain is of the form [67]

α(t− s) = 2~
∫ ∞

0

dωJ(ω)

[
coth

(
~ω

2kBT

)
cos(ω(t− s)) + i sin(ω(t− s))

]
(2.8)

where kB is the Boltzmann constant and T is the temperature. The environment

can be further modeled through the spectral density function, J(ω), for example as

an Ohmic bath where J(ω) = ωe−ω/ωc , characterizing an environment that responds

instantly. It will be shown in Chapter 4 that the temperature of the environment

greatly impacts the entanglement dynamics of the qubits.

Correlated Noise

Besides the noise having a correlation to its own past values, it is also possible for

two environments to have a dependence on each other’s past time values. Suppose

there are two environments present, having respective noise variables xt and yt. They

each have an autocorrelation function described as M [x∗txs] = α(t−s) and M [y∗t ys] =

β(t− s), but can also have a cross-correlation function M [x∗tys] = γ(t− s), such that

the current value of noise xt depends on the past values of noise yt. It will be proposed

in Chapters 3 and 4 that a statistical correlation between environments can simulate



24

a common bath to very distant qubits and provide beneficial entanglement conditions

for certain qubit schemes.

2.3 Solving the QSD Equation: The O-operator Ansatz

The large challenge of solving the QSD Equation in an exact way is evaluating the

functional derivative with respect to noise,
δ |ψt〉
δzs

. One very effective way is to assume

that this derivative can be replaced by a linear time-local operator, termed the O-

operator, such that
δ |ψt〉
δzs

= Ô(t, s, z) |ψ〉 with the initial condition Ô(t = s, s, z) = L

[52, 56]. A closed set of differential equations for this operator can be uniquely derived

from the consistency conditions:

δ

δzs

(
∂ |ψt〉
∂t

)
=

∂

∂t

(
δ |ψt〉
δzs

)
. (2.9)

in which case the O-operator would facilitate an exact solution to the QSD equation.

However, for certain types of interactions with a non-Markovian environment, the

derivation of explicit equations governing the O-operator is not possible, for which is

becomes necessary to employ a few approximations.

In the event that the system and environment are weakly coupled, the O-

operator can be expanded in powers of the coupling constant,

O(t, s, z) =
∑
n

gnOn(t, s, z) (2.10)

where On(t, s, z) are powers of L in the interaction picture of the system. The lowest

order of this weak coupling approximation is therefore

O(t, s, z) ≡ O0(t, s, z) = e−iĤSys(t−s)LeiĤSys(t−s), (2.11)
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which, when applied to the derivation of the master equation, recovers the Redfield

master equation.

For general coupling strengths, it is often of good practice to expand the O-

operator in powers of the delay time (t− s) [68]:

Ô(t, s, z) ≈ Ô(t = s) +

(
∂Ô(t, s, z)

∂t

)
t=s

(t− s) + ... (2.12)

The simplest approximation is the first term in the series, O(t, s, z) ≈ L, another

formulation of the Markov approximation because it is most accurate when used in

the case of a memoryless environment. It is always possible to derive a Markov master

equation, but it does not always properly describe more complicated systems. For

near-Markov environments, the second order term can be taken into account in what

is known as the Post-Markov approximation. Although it provides an improvement

beyond the Markov approximation, it does not properly account for true memory

effects, especially regarding entanglement, as will be shown in Chapter 5.

2.31 Non-linear QSD Equation

After evaluating the O-operator, O(t, s, z), the QSD equation (2.5) becomes a linear

partial differential equation which can be solved numerically with ease. However,

linear stochastic differential equations generally have a large problem preserving the

norm of the wavefunction. At the extremes, the norm can be either zero or infinity,

making it necessary to have a very large sampling in order to properly recover the

correct statistics, M [〈ψt(z)|ψt(z)〉] = 1. This poses a computational problem for

more complicated system, for which it would take an enormously large number of

realizations of the quantum state to produce physically accurate results. Instead, it
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becomes convenient to define a state vector that is normalized at every point in time,

|ψ̃t〉 =
|ψt〉

|| 〈ψt|ψt〉 ||
, (2.13)

along with a subsequent QSD equation that always preserves the norm of the quantum

state:

∂ |ψ̃t〉
∂t

= −iĤSys |ψ̃t〉+ (L− 〈L〉t)z̃t |ψ̃t〉 (2.14)

−
∫ t

0

dsα(t− s)[(L† − 〈L†〉t)Ô(t, s, z̃)

− 〈(L† − 〈L†〉t)Ô(t, s, z̃)〉t] |ψ̃t〉

with the shifted noise variable

z̃t = zt +

∫ t

0

dsα∗(t− s) 〈L†〉s (2.15)

where 〈A〉t = 〈ψ̃t|A|ψ̃t〉 is the ensemble mean of operator A and α(t − s) is the

autocorrelation function of the noise. Although this equation is now nonlinear and

more difficult to solve individually, it is of good practice to adopt this QSD equation

to ensure the preservation of the norm on every trajectory.

2.4 Consistency between approaches

Further analyzing the QSD Eq. (2.5) reveals the stochastic behavior governing the

qubit dynamics. The qubits are no longer evolving along a fixed evolution as they

would in a closed system, but rather evolve along many different trajectories according

to the statistical properties of the noise. By computationally generating a realization

of the random noise z
(i)
t , the QSD equation can be solved for a specific stochastic
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evolution of the qubits, |ψ(i)
t 〉, known as a quantum trajectory. This solution would

represent a real time measurement of the system dynamics, but would not provide

a substantial amount of information about what to expect in future trajectories or

give insight into how to control the entanglement of the qubits. By producing a

large number of quantum trajectories, N , we can recover the evolution of the en-

semble dynamics of the qubits governed by the reduced density matrix operator,

ρS(t) = M [|ψt(z)〉 〈ψt(z)|], by numerically averaging the probability density over all

realizations at time point t,

ρS(t) =
1

N

N∑
i

|ψ(i)
t 〉 〈ψ

(i)
t | . (2.16)

Essentially, this accounts for the random environmental effects in an average way,

which is consistent with the implications of the master equation.

In the following chapters, the entanglement dynamics for various fundamental

qubit systems will be developed using both exact master equation and exact quan-

tum trajectory techniques. In some cases, the exact entanglement evolution will be

revealed for the very first time, divulging brand new insight into the strange behavior

of entanglement.



28

Chapter 3

Semiclassical Model with Correlated White Noise

The realization of quantum communication schemes promises fail-proof security through

quantum cryptography and unique features such as quantum teleportation [1]. The

most basic setup, as depicted in Figure 3.1, consists of two distant entangled qubits

A and B that each interact with their local environment, EA and EB respectively.

Whether it be electromagnetic radiation, the modes of a cavity, or simply the compo-

sition of the device that the qubits are in, local environmental noise will undoubtedly

cause the swift decay of entanglement between the qubits, leaving most scenarios

ineffective. There has been extensive work dedicated to the quantum entanglement

dynamics of qubits in the presence of local noise, both in the classical and quantum

regimes [38, 39, 69, 70, 71, 72, 73, 74, 75, 76, 77]. Yu and Eberly demonstrated that for

the local dephasing channel, qubits were found to disentangle in a shorter time than

their individual dephasing times [38, 70]. They later showed that two initially entan-

gled two-level atoms in spatially separated non-interacting cavities will also exhibit

shorter nonlocal disentanglement times than the local decoherence times [39]. Both of

these examples highlight the fragility of qubit entanglement when confronted with a

local noisy environment, limiting the practicality of current quantum communication

apparatuses.

It is strictly enforced that no local operation on a qubit can enhance the mea-

sure of entanglement, narrowing down the possibilities for robust entanglement con-

trol. The only way to modulate entanglement in our favor is then to augment a global

factor in the open quantum system. It is known that a dephasing environment that

is common to the qubits preserves the entanglement of a special class of initial states,
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A B 

EA EB 

Figure 3.1: Two uncoupled qubits A and B separately coupled to classical stochastic
fields, EA(t) and EB(t), which are then correlated.

called the decoherence-free subspace [78, 79]. Due to the nonlocality of entanglement,

a qubit cannot necessarily sense the amount of distance between itself and its entan-

gled counterpart, presenting a golden opportunity to mimic a common environment

that preserves entanglement for distant qubits. This becomes a statement of high

symmetry, ensuring that the local environmental conditions are nearly identical, as

well as a proposition of correlated noise. By introducing a statistical correlation be-

tween the local noise variables, the separate environments will be perceived as one

common environment by the qubits, allowing for the modulation of entanglement

[73]. The full effect of correlated noise will be revealed in the study of entanglement

dynamics between the two qubits for both the dephasing and dissipative models. In

this chapter, it will be shown that entanglement can be fully preserved for a wide

range of initial states via correlated classical noise.

3.1 Phase relaxation

When the decoherence of the quantum state of the qubit is solely phase relaxation,

the population of the energy levels of the quantum particle are not affected by the

interaction with the environment. This dephasing interaction represents a rotation

of the Bloch vector about the ẑ-axis, therefore only changing the phase of the basis
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states {|−〉 , |+〉}. A specific case is the Pauli-Z matrix, σz =

 1 0

0 −1

, which simply

represents no change in the |−〉 state of the qubit and a π phase shift of the |+〉

state. Supposing that boths qubits interact with uncorrelated local phase noise, the

decoherence of the superposition state would normally lead to an exponential decay or

even the finite death of entanglement [38, 70, 77, 76, 75], which can now be completely

preserved at its initial value under fully correlated noise, for certain initial states. The

effective Hamiltonian for the two qubits A and B in the presence of classical phase

noises, fA(t) and fB(t) respectively, is (setting ~ = 1)

Ĥeff = Ĥsys + fA(t)σAz + fB(t)σBz (3.1)

where the system Hamiltonian is explicitly Ĥsys =
ωA
2
σAz +

ωB
2
σBz . The local noise

variables obey the statistical properties

M [fA(t)fA(s)] = γAδ(t− s), (3.2)

M [fB(t)fB(s)] = γBδ(t− s), (3.3)

M [fA(t)fB(s)] = Γδ(t− s), (3.4)

where M [·] denotes the ensemble average over all possible realizations of the classical

noises. The parameters γA and γB are the rate of phase relaxation from the local

noises, and for simplicity, they are taken to be equal such that γA = γB = γ. The pa-

rameter Γ then determines the cross-correlation of the two fields, M [fA(t)fB(s)], and

is restricted by the relation Γ ≤ γ. Due to the random effects of the classical noises,

the quantum state of the qubits, |ψ〉, will undergo a stochastic unitary evolution,

∂ |ψ〉
∂t

= −i
(
Hsys + fA(t)σAz + fB(t)σBz

)
|ψ〉 . (3.5)
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The properties of the environment will play a pivotal role in determining the entan-

glement possibilities available to certain qubit states.

In order to resolve the ensemble dynamics of the qubits, one must average

over all outcomes of the random behavior by taking the mean of the probability

density over all possible sets of noise, ρS = M [|ψ〉 〈ψ|], known as the reduced density

operator. The time dependence of this operator is then expressed as ρ̇S = M [|ψ̇〉 〈ψ|]+

M [|ψ〉 〈ψ̇|], where the stochastic Schrödinger Equation (3.5) is inserted as

M [|ψ̇〉 〈ψ|] = −iHsysρS − iσAz M [fA(t) |ψ〉 〈ψ|]− iσBz M [fB(t) |ψ〉 〈ψ|]. (3.6)

The property of correlated noise is then applied within the mean noise terms:

M [fA(t) |ψ〉 〈ψ|] =

∫ t

0

dsM [fA(t)fA(s)]M

[
δ |ψ〉 〈ψ|
δfA(s)

]
+

∫ t

0

dsM [fA(t)fB(s)]M

[
δ |ψ〉 〈ψ|
δfB(s)

]
, (3.7)

M [fB(t) |ψ〉 〈ψ|] =

∫ t

0

dsM [fB(t)fA(s)]M

[
δ |ψ〉 〈ψ|
δfA(s)

]
+

∫ t

0

dsM [fB(t)fB(s)]M

[
δ |ψ〉 〈ψ|
δfB(s)

]
. (3.8)

Applying the chain rule, the functional derivatives are expanded as

δ |ψ〉 〈ψ|
δfA(s)

=
δ |ψ〉
δfA(s)

〈ψ|+ |ψ〉 δ 〈ψ|
δfA(s)

, (3.9)

δ |ψ〉 〈ψ|
δfB(s)

=
δ |ψ〉
δfB(s)

〈ψ|+ |ψ〉 δ 〈ψ|
δfB(s)

. (3.10)

A unique ansatz is presented in Chapter 2, Section 2.3, for replacing the functional

derivatives in the above equations by a linear operator, termed the O-operator, which,

in general, is a function of time and noise. Because the environments have no memory
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of past times, the Markov approximation is employed and the O-operators take on a

very simple form:

δ |ψ〉
δfA(s)

= ÔA(t, s, fA, fB) |ψ〉 = iσAz |ψ〉 (3.11)

δ 〈ψ|
δfA(s)

= 〈ψ| Ô†A(t, s, fA, fB) = −〈ψ| iσAz (3.12)

δ |ψ〉
δfB(s)

= ÔB(t, s, fA, fB) |ψ〉 = iσBz |ψ〉 (3.13)

δ 〈ψ|
δfB(s)

= 〈ψ| Ô†B(t, s, fA, fB) = −〈ψ| iσBz (3.14)

Subsequently, the master equation governing the ensemble dynamics of two qubits in

the presence of correlated phase noise is

ρ̇S = −i[Hsys, ρS] − γA
(
ρS − σAz ρSσAz

)
− γB

(
ρS − σBz ρSσBz

)
(3.15)

− Γ
(
σAz σ

B
z ρS + ρSσ

A
z σ

B
z − σAz ρSσBz − σBz ρSσAz

)
.

At a first glance, Eq. (3.15) immediately displays the relaxation of qubit A at rate

γA, that of qubit B at rate γB, and the additional effects due to the cross-correlation

between the two fields. Without correlated noise, Γ = 0, the master equation would

simply be the sum of the two single-qubit Lindblad master equations [80], in which

case the two qubits would evolve separately throughout time and their entanglement

would inevitably deteriorate. The correlation between the two classical fields, char-

acterized by various levels of Γ, will then either enhance or diminish the degree of

entanglement of the entire evolution depending on the initial state of the qubits.

Since in most applications the main goal is to maintain the qubits in a max-

imally entangled state, much attention is placed on the four Bell States, |Ψ±〉 =

1√
2
{|++〉 ± |−−〉} and |Φ±〉 = 1√

2
{|+−〉± |−+〉}, which all have a concurrence mea-
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surement of 1. In addition, the ability to improve the entanglement of a more general

initial state will arise with a special X-form density matrix,

ρa =
1

2



a 0 0 a

0 (1− a) (1− a) 0

0 (1− a) (1− a) 0

a 0 0 a


, (3.16)

where 0 ≤ a ≤ 1. This state includes the Bell states as special cases, a = 0 referring

to state |Ψ+〉 and a = 1 to state |Φ+〉. The initial entanglement value of this X-form

matrix as a function of parameter a, as measured by concurrence [16], is C(ρa) =

2 max{0, |2a− 1|}, accounting for a large range of initial entanglement conditions. It

will be revealed that for some entangled states, correlated noise will stand to fight

against decoherence and consequently cause a slower disentanglement, whereas for

others, correlated noise can add to the decoherence mechanism and cause a faster

decay of entanglement.

Only in the dephasing case does one find an analytical solution to the two-qubit

master equation,

ρS(t) =



ρ11(0) ρ12(0)e−2γt−iωt ρ13(0)e−2γt−iωt ρ14(0)e−4(γ+Γ)t−2iωt

ρ21(0)e−2γt+iωt ρ22(0) ρ23(0)e−4(γ−Γ)t ρ24(0)e−2γt−iωt

ρ31(0)e−2γt+iωt ρ32(0)e−4(γ−Γ)t ρ33(0) ρ34(0)e−2γt−iωt

ρ41(0)e−4(γ+Γ)t+2iωt ρ42(0)e−2γt+iωt ρ43(0)e−2γt+iωt ρ44(0)


.

(3.17)

From this solution it is shown that out of all reduced density matrix elements, corre-

lated noise only effects the anti-diagonal elements, ρ14(t) and ρ23(t) and their conju-

gates. Therefore, initial states of the X-form in Eq. (3.16) are chosen to be analyzed,
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Figure 3.2: Entanglement evolution for qubits in the initial state (a)|Ψ±〉, (b) |Φ±〉,
and (c) the X-form matrix in Eq. (3.16) under a dephasing interaction with local
baths having various levels of correlation governed by Γ/γ.

for which the concurrence throughout time will remain in the form

C(ρS(t)) = 2 max{0, ae−4(γ+Γ)t − (1− a), (1− a)e−4(γ−Γ)t − a}. (3.18)

The entanglement evolution is illustrated in Figure 3.2 for initial states (a) |Ψ±〉,

(b) |Φ±〉, and (c) the X-form matrix with a = 1/3, having an initial entanglement

of C(ρa(0)) = 1
3
. The concurrence is plotted over the general timescale of the local

dephasing time, γt, and the cross-correlation is then controlled by Γ/γ, which equals

zero when the environments are statistically independent and one when they are fully

correlated.

For all values of γ, when the environments are completely uncorrelated, Γ/γ =

0, the pure states |Ψ±〉 and |Φ±〉 exhibit the exponential decay of entanglement, well-

known to pure state phase relaxation [38, 10], and the mixed X-state experiences

the sudden death of entanglement [70]. However, correlated noise affects these states

in different ways. On one hand, for the Bell State |Ψ±〉, the correlation between the

stochastic fields causes the concurrence curve to move downward, denoting a decrease

in the degree of entanglement and a faster disentanglement rate. On the other hand,
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for Bell state |Φ±〉 and the X-form state, correlated noise markedly enhances the

entanglement between the qubits. Remarkably, at the maximum level of correlation,

Γ/γ = 1, the qubits in |Φ±〉 are able to remain indefinitely in the maximally entangled

state. The class of special X-form states with a < 1
2

can therefore be highlighted as

being preserved at their initial entanglement value for all time due to correlated noise.

This is also reflected in the analytical solution for the concurrence in equation (3.18),

for which a < 1
2

becomes steady at C(ρa(t)) = 1−2a only when Γ = γ. A full analysis

of the entanglement evolution for the spectrum of special X-form states under fully

correlated noise is plotted in Figure 3.3.

0
.25

.5
.75

1

0
.5

1
1.5

2

0

0.25

0.5

0.75

1

 

a 

C(
!)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

" t

Figure 3.3: Entanglement evolution as a function of parameter a, denoting the spec-
trum of initial states in the special X-form matrix in Eq. (3.16) for the dephasing
model with fully correlated local baths.

The right half of the plot portrays the complete preservation of entanglement

via correlated noise for a < 1
2
, with the lower bound a = 0 illustrating the robust

sustenance of entangled Bell state |Φ+〉. In constrast, when a > 1
2
, the sudden death of

entanglement prevails, except for the case of a = 0, for which the entanglement of |Ψ+〉
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asymptotically decays to zero. In between these two cases lies the separable state,

a = 1
2
, which is unaffected by the correlation of white phase noise. In Chapter 4, it

will be shown that correlated noise at a finite temperature can generate entanglement

between qubits, even for an initially separable state.

The exponential factor in the analytical solution for reduced density matrix

element ρ23(t), (γ − Γ), which governs the concurrence of the X-state when a < 1
2
,

exactly demonstrates the idea of ”subtracting” decoherence effects of the environment

through correlated noise. Clearly, the ability to fully preserve entanglement between

qubits via correlated white phase noise was demonstrated for a wide range of initial

states. The results will be quite different for correlated amplitude noise.

3.2 Dissipation

A dissipative mechanism is a source of decoherence in which populations of the qubit

states will change due to the exchange of energy with the environment. In terms of a

qubit in the basis {|−〉 , |+〉}, this will refer to population in the |−〉 state transferring

to the |+〉 state and vice versa, which is normally represented by the raising and

lowering operators, σ+ =

 0 1

0 0

 and σ− =

 0 0

1 0

, which in combination form the Pauli

spin X operator, σx = σ+ + σ− =

 0 1

1 0

. This open quantum system represents an

extension of the spin-boson model to the semi-classical regime, a well-known problem

in condensed matter physics [81, 82, 63, 83]. The effective Hamiltonian representing

two qubits in the presence of local amplitude noises, gA(t) and gB(t) is

Ĥeff = Ĥsys + gA(t)σAx + gB(t)σBx . (3.19)



37

The classical noise variables have Markov statistical properties

M [gA(t)gA(s)] = χAδ(t− s), (3.20)

M [gB(t)gB(s)] = χBδ(t− s), (3.21)

M [gA(t)gB(s)] = Γδ(t− s), (3.22)

where χA and χB are the individual dissipation rates of the qubits and are taken to

be equal, χA = χB = χ. Once again, Γ quantifies the level of correlation between the

noise and must be less than or equal to χ in magnitude.

Similar steps can be taken to derive the Markov master equation as in Section

3.1. Following closely to Eqs. (3.5-3.15), the main difference will be in defining the

functional derivatives with respect to amplitude noise:

δ |ψ〉
δgA(s)

= ÔA(t, s, gA, gB) |ψ〉 = iσAx |ψ〉 (3.23)

δ 〈ψ|
δgA(s)

= 〈ψ| Ô†A(t, s, gA, gB) = −〈ψ| iσAx (3.24)

δ |ψ〉
δgB(s)

= ÔB(t, s, gA, gB) |ψ〉 = iσBx |ψ〉 (3.25)

δ 〈ψ|
δgB(s)

= 〈ψ| Ô†B(t, s, gA, gB) = −〈ψ| iσBx . (3.26)

Finally, the master equation for two qubits under correlated classical amplitude noise

is

ρ̇S = −i[Hsys, ρS] − χA
(
ρS − σAx ρSσAx

)
− χB

(
ρS − σBx ρSσBx

)
(3.27)

− Γ
(
σAx σ

B
x ρS + ρSσ

A
x σ

B
x − σAx ρSσBx − σBx ρSσAx

)
.

Although this master equation does not facilitate an analytical solution for the re-
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duced density operator evolution, the entanglement dynamics were calculated numer-

ically for the special X-form initial state of Eq. (3.16) and plotted against χt in Figure

3.4. For values of parameter a, sweeping through a wide range of initial entangle-
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Figure 3.4: Entanglement evolution as a function of parameter a, denoting the spec-
trum of initial states in the special X-form matrix in Eq. (3.16) for the dissipative
model with fully correlated local baths.

ment conditions, the effects of correlated amplitude noise all prove to be detrimental

to entanglement. Whereas for a dephasing interaction the correlated noise was able

to fight against the decoherence of certain qubit states, it has been shown only to

assist in the fast decay of entanglement. The fate of all qubit states under correlated

amplitude noise is the sudden death of entanglement.

3.3 Summary

Qubits in the presence of local classical noise will always experience decoherence and

disentanglement as a consequence. By introducing full statistical correlation between

the two environments, the entanglement can be modulated and sometimes even main-

tained at its maximum value, depending on the type of decoherence mechanism. For
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a dephasing type of system-environment interaction, causing only phase relaxation

of the qubit state, a correlation between the noises counteracted the decoherence ef-

fect and provided a complete preservation of entanglement for all time for the Bell

State |Φ±〉 and the X-form states with a > 1
2
. In contrast, correlated amplitude noise

caused the sudden death of all entangled states, making dissipation the largest chal-

lenge against entanglement control. The true test of the open quantum system will

be combating the effects of dissipative noise. A more general environment consists of

both amplitude and phase noises and, in future work, the effects of correlated noise

on this type of mixed decoherence system will be analyzed. Comparing the vari-

ous relaxation timescales and their effects on entanglement with reveal more insight

into how to generally control entanglement via correlated noise. In the next chapter,

correlated noise will be derived from first principles in a fully quantized approach.
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Chapter 4

Correlated Non-Markovian Phase Noise for Quantized Environments

In the previous chapter, the promising effects of correlated noise were revealed for two

spatially separated qubits in the presence of local classical Markovian environments

[73]. When the local noises were statistically dependent on one another, it provided an

optimal scenario for entanglement preservation for a large range of entangled states.

This leads to the task of defining correlated quantized noise on a fundamental level

and exploring the realm of complex non-Markovian environments, such as Ornstein-

Uhlenbeck noise and a thermal environment.

It is known that qubits in a common environment are able to remain fully

entangled, even under phase relaxation, for a certain class of initial states living

in the decoherence-free subspace (DFS) [78, 79]. However, this is technically only

true in the highly symmetrical case that the qubits obey permutation symmetry. In

reality, qubits in a common bath experience the environment differently, perhaps if

the atoms are at different positions in the cavity. This will cause the qubits to have

different couplings with the modes of the cavity and hence different noise variables1

that are statistically correlated. In the perfectly symmetrical case, the noises are

fully correlated and it is this complete statistical dependence between the noises

that provides the means for entanglement to be fully preserved [37, 38]. Therefore,

if we introduce a statistical correlation between the local noises of two qubits in

separate cavities, we can in effect modulate their measure of entanglement, as was

shown in previous work for classical environments [73]. This leads to the task of

defining correlated quantized noise on a fundamental level and exploring the realm

1A quantum or classical environment is referred to as noise when its collective effect on the qubit
is stochastic in nature and can be represented by a random variable.
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of complex non-Markovian environments, such as Ornstein-Uhlenbeck noise and a

thermal environment. In these cases, it will be necessary for the cavities to provide

identical environmental conditions for both qubits in order for them to have the

permutation symmetry necessary for the complete preservation of entanglement. This

requires the qubits to have equal coupling strengths to each mode as well as the

cavities both having the same mean number of photons in each mode. Although this

is a very restrictive criteria, it will be shown that even a small statistical correlation

between the cavity noises will provide an improvement to entanglement for a wide

range of initial qubit states.

Because entanglement is a nonlocal phenomena, it doesn’t matter whether the

qubits are nanometers or miles apart. Suppose there are two spatially separated

atoms, each in a cavity providing local phase noise, as depicted in Figure 4.1. If the

cavities provide identical environmental conditions, such as a uniform structure and

identical modes, and the local noise variables are then fully correlated, perhaps if the

cavities are connected by an optical fiber, the qubits will perceive themselves to be in

a common environment where entanglement does not decay. In this way, correlated

phase noise can provide a great improvement to quantum communication schemes,

where the loss of quantum coherence is known to be a large problem.

4.1 Deriving the QSD Equation

In this chapter, the stochastic dynamics are developed for two atoms in spatially

separate cavities, whose modes are modeled as a quantized environment. The most
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A B 

Figure 4.1: Two spatially separated qubits each in a cavity providing local phase noise.
The cavities have identical modes and correlated noise, allowing for the entanglement
between the qubits to be preserved.

general Hamiltonian describing this open quantum system is

HTot = HSys +HEnv +HInt (4.1)

HSys =
ωA
2
σAz +

ωB
2
σBz (4.2)

HEnv =
∑
λ

ω
(A)
λ a†λaλ +

∑
λ

ω
(B)
λ b†λbλ (4.3)

HInt =
∑
λ

(
g∗λLAa

†
λ + gλL

†
Aaλ

)
+
∑
λ

(
f ∗λLBb

†
λ + fλL

†
Bbλ

)
. (4.4)

The system Hamiltonian, ĤSys, describes the energy of the two qubits, having transi-

tion frequencies ωA and ωB, respectively. The modes of the cavities, having respective

frequencies ω
(A)
λ and ω

(B)
λ , are modeled as a collection of harmonic oscillators in the

environment Hamiltonian, ĤEnv, and have respective creation operators aλ and bλ.

The qubits then interact with their local environments in the interaction Hamiltonian,

ĤInt, via the respective coupling constants, gλ and fλ, and the Lindblad operators,

LA and LB, which describe the type of decoherence mechanism is caused by their

cavity. Here, the focus is on phase relaxation where LA = σAz and LB = σBz , but the

Quantum State Diffusion (QSD) equation [7, 8, 49, 52] for the dynamics of the qubits

will be derived for a general interaction.
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In order to convince the qubits that they are in one single environment, the cav-

ities must have the same number of modes with equivalent frequencies, ω
(A)
λ = ω

(B)
λ =

ωλ. In the interaction picture of the environment, the time-dependent Schrödinger

equation for the quantum state of the entire open quantum system, |ΨTot〉, is

d |ΨTot〉
dt

= −iĤSys |ΨTot〉 − iLA
∑
λ

gλaλe
iωλt |ΨTot〉 − iL†A

∑
λ

g∗λa
†
λe
−iωλt |ΨTot〉

− iLB
∑
λ

fλbλe
iωλt |ΨTot〉 − iL†B

∑
λ

f ∗λb
†
λe
−iωλt |ΨTot〉

(4.5)

In order to resolve the dynamics of the qubits alone via the QSD equation,

there must be a few assumptions made. First, the state of the open quantum system

can be expanded into the tensor product of the qubit state, |ψS〉 and the state of the

environments, |z(A)〉 ⊗ |z(B)〉, which are all considered to initially be separable. The

environment states |z(A)〉 and |z(B)〉 are a representation of Bargmann coherent states

for each mode, such that

|z(A)〉 = |z(A)
1 〉 ⊗ |z

(A)
2 〉 ⊗ · · · ⊗ |z

(A)
λ 〉 ⊗ · · · (4.6)

|z(B)〉 = |z(B)
1 〉 ⊗ |z

(B)
2 〉 ⊗ · · · ⊗ |z

(B)
λ 〉 ⊗ · · ·. (4.7)

The second assumption is that all of the cavity modes begin in the vacuum state

|0λ〉. It follows that the total wavefunction in Eq. (4.5) can be expanded to |ΨTot〉 =

|ψS〉 ⊗ |z(A)〉 ⊗ |z(B)〉, where the annihilation and creation operators act in their
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respective environment spaces such that

aλ |z(A)
λ 〉 = z

(A)
λ |z

(A)
λ 〉 (4.8)

a†λ |z
(A)
λ 〉 =

∂

∂z
(A)
λ

|z(A)
λ 〉 (4.9)

bλ |z(B)
λ 〉 = z

(B)
λ |z(B)

λ 〉 (4.10)

b†λ |z
(B)
λ 〉 =

∂

∂z
(B)
λ

|z(B)
λ 〉 . (4.11)

It should be recalled that there is only the potential for entanglement to be preserved

when the qubits obey permutation symmetry, such that if they switched positions

there would be no difference in their surroundings. The condition of identical envi-

ronmental conditions is then demonstrated in setting z
(A)
λ = z

(B)
λ = zλ, such that the

mean number of photons per mode, |z(A)
λ |2 for cavity A and |z(B)

λ |2 for cavity B, are

exactly the same. Taking this action, the differential equation for the dynamics of

the qubits interacting with the modes of their local cavities is

∂ |ψS〉
∂t

= −iĤSys |ψS〉 − iLA
∑
λ

gλzλe
iωλt |ψS〉 − iL†A

∑
λ

g∗λe
−iωλt∂ |ψS〉

∂zλ

− iLB
∑
λ

fλzλe
iωλt |ψS〉 − iL†B

∑
λ

f ∗λe
−iωλt∂ |ψS〉

∂zλ

(4.12)

The above equation describes the exact dynamics of the qubits interacting with each

and every mode of their local environment. For a large number of modes, however,

it becomes very useful to look at the collective effect of those environments, which is
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random in nature, and is manifested in the Gaussian noise variables defined as

xt ≡ −i
∑
λ

gλzλe
iωλt (4.13)

yt ≡ −i
∑
λ

fλzλe
iωλt. (4.14)

The noises have mean zero, 〈xt〉 = 〈yt〉 = 0, and variance equal to one, 〈x2
t 〉− 〈xt〉

2 =

〈y2
t 〉 − 〈yt〉

2 = 1, as well as having auto- and cross-correlation functions:

M [x∗txs] =

∫
d2z

π
e−|z|

2

x∗txs =
∑
λ

|gλ|2e−iωλ(t−s) (4.15)

M [y∗t ys] =

∫
d2z

π
e−|z|

2

y∗t ys =
∑
λ

|fλ|2e−iωλ(t−s) (4.16)

M [x∗tys] =

∫
d2z

π
e−|z|

2

x∗tys =
∑
λ

g∗λfλe
−iωλ(t−s) (4.17)

M [y∗t xs] =

∫
d2z

π
e−|z|

2

y∗t xs =
∑
λ

f ∗λgλe
−iωλ(t−s) (4.18)

where d2z = d2z1d
2z2 · · · d2zλ · · · and |z|2 = |z1|2 + |z2|2 + . . . + |zλ|2 . . .. It must be

noted that it was the identical environmental conditions that allowed for the cross-

correlation of the noises in Eqs. (4.17,4.18) due to the identity in the Bragmann

coherent state representation,

∫
d2zλ
π

e−|zλ|
2

zλz
∗
λ = 1. (4.19)

In addition, the difference in coupling constants gλ and fλ will determine the level of

correlation between the noises, such that when gλ = fλ there is a complete statistical

correlation. The effect of correlated noise will become apparent in the analysis of the

entanglement dynamics of the distant qubits.
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Introducing the noises will transform Eq. (4.12) into one that is stochastic,

where the wavefunction will depend explicitly on the noises, |ψS〉 = |ψt(x, y)〉. Ex-

ploiting this dependence, the partial derivatives with respect to the cavity modes zλ

can also be transformed according to the chain rule,

∂ |ψt(x, y)〉
∂zλ

=

∫ t

0

ds

(
δ |ψt(x, y)〉

δxs

)(
∂xs
∂zλ

)
+

(
δ |ψt(x, y)〉

δys

)(
∂ys
∂zλ

)
. (4.20)

From Eqs. (4.13) and (4.14), it is deduced that

∂xs
∂zλ

= gλe
iωλs ,

∂ys
∂zλ

= fλe
iωλs (4.21)

facilitating the compact form of the QSD equation for qubits interacting with local

cavities whose noise variables are statistically correlated,

∂ |ψt〉
∂t

= −iĤSys |ψt〉 + LAxt |ψt〉 − L†A
∫ t

0

dsM [x∗txs]
δ |ψt〉
δxs

+M [x∗tys]
δ |ψt〉
δys

+ LByt |ψt〉 − L†B
∫ t

0

dsM [y∗t xs]
δ |ψt〉
δxs

+M [y∗t ys]
δ |ψt〉
δys

(4.22)

where the dependence on xt and yt is now implied in the notation |ψt〉. Equation (4.22)

generally describes the time dynamics of two spatially separated qubits interacting

with local noises that are statistically correlated. For the specific case of a dephasing

type of qubit-environment interaction, where only phase information about the wave-

function of the qubits is lost to the environment, the Lindblad operators LA = σAz

and LB = σBz are substituted in.

The intricacy of finding an exact solution to the stochastic differential Eq.

(4.22) is apparent in its nonlocal dependence on time through the noise variables under
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the memory integral [54]. This complexity is addressed by replacing the functional

derivative of the state vector with respect to noise by the O-operators [52, 56, 68, 65],

such that

δ |ψt〉
δxs

= ÔA(t, s, x, y) |ψt〉 , (4.23)

δ |ψt〉
δys

= ÔB(t, s, x, y) |ψt〉 . (4.24)

This approach generally applies to all QSD models, however in most cases there is no

explicit solution for the O-operators, making it necessary to use certain approxima-

tions. For our current model, we derive the exact O-operators, facilitating both an

exact and solvable form of the QSD Eq. (4.22). The distinct conditions that deter-

mine the explicit form of the differential equations which govern the O-operators are

the initial conditions, ÔA(t = s, s, x, y) = σAz and ÔB(t = s, s, x, y) = σBz , and the

consistancy conditions

∂

∂t

(
δ |ψt〉
δxs

)
=

δ

δxs

(
∂ |ψt〉
∂t

)
, (4.25)

∂

∂t

(
δ |ψt〉
δys

)
=

δ

δys

(
∂ |ψt〉
∂t

)
. (4.26)

For this particular model, the dynamic equations for ÔA(t, s, x, y) and ÔB(t, s, x, y)

can be found in Appendix B. Due to the commutativity of the Lindblad operators

with the system Hamiltonian, [ĤSys, LA] = [ĤSys, LB] = 0, the O-operators take on

the very simple form,

ÔA(t, s, x, y) = σAz (4.27)

ÔB(t, s, x, y) = σBz . (4.28)
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Therefore, the QSD equation for qubits exhibiting phase relaxation under local cor-

related noise is

∂ |ψt〉
∂t

= −iĤSys |ψt〉 + σAz xt |ψt〉 − (σAz )2

∫ t

0

dsM [x∗txs] |ψt〉

+ σBz yt |ψt〉 − (σBz )2

∫ t

0

dsM [y∗t ys] |ψt〉

− σAz ⊗ σBz
∫ t

0

ds {M [x∗tys] +M [y∗t xs]} |ψt〉 .

(4.29)

The first two lines of Eq. (4.29) highlight the separate relaxation dynamics of the

qubits while interacting with their local cavities. The third line epitomizes the effects

of correlated noise. Although the qubits are initially uncoupled and possibly at a great

distance apart, the statistical correlation between the local noise variables builds a

bridge between the qubits, causing them to quantum mechanically interact via the

operator σAz ⊗σBz . It is this induced coupling between the qubits that will consequently

cause the enhancement of their entanglement, depending on the level of correlation.

4.11 Correlated Noise

In order to quantify the correlation, it is relevant to take an introspective look at the

noise variables reiterated below

xt ≡ −i
∑
λ

gλzλe
iωλt (4.13)

yt ≡ −i
∑
λ

fλzλe
iωλt. (4.14)

Within the current formalism, the two factors contributing to the level of statistical

dependence between the noises are the coupling constants, gλ and fλ, and the assertion
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that both cavities have the same mean number of photons, |zλ|2, in each mode. It

can be said that if the qubits are coupled to every cavity mode in exactly the same

way, gλ = fλ, then the noise variables xt and yt are fully correlated. This also implies

that their autocorrelation functions are equal, M [x∗txs] = M [y∗t ys]. If the noises are

to stray away from being correlated, it means that the qubits will couple in a different

way to each mode of the cavity. This can be introduced in the following way:

yt = κxt + (1− κ)rt (4.30)

where rt numerically represents a Gaussian noise variable that is entirely statistically

independent from xt, such that M [x∗t rs] = 0. The parameter κ now quantifies the

amount of correlation between the noises, such that when κ = 0, the noise environ-

ment of qubit B is completely indepedent from that of qubit A, while when κ = 1,

they are exactly identical. The autocorrelation function of yt now becomes

M [y∗t ys] = κ2M [x∗txs] + (1− κ)2M [r∗t rs] (4.31)

which once again characterizes the effect of parameter κ.

Inserting this ansatz into the QSD equation (4.29) reveals

∂ |ψt〉
∂t

= −iĤSys |ψt〉 + (σAz + κσBz )xt |ψt〉 − (σAz + κσBz )2

∫ t

0

dsM [x∗txs] |ψt〉

+ (1− κ)σBz rt |ψt〉 − (1− κ)2(σBz )2

∫ t

0

dsM [r∗t rs] |ψt〉 .

(4.32)

This equation exactly achieves the goal of quantifying correlated noise with a single

parameter. When κ = 0, Eq. (4.32) boils down to reflect the dynamics of two qubits
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interacting with statistically independent noises [65, 63]:

∂ |ψt〉
∂t

= −iĤSys |ψt〉 + σAz xt |ψ〉 −
∫ t

0

dsM [x∗txs] |ψt〉

+ σBz rt |ψ〉 −
∫ t

0

dsM [r∗t rs] |ψt〉 , (4.33)

while when κ = 1, the noises become fully correlated and Eq. (4.32) transforms into

two qubits that perceive themselves to be in a common bath [84]:

∂ |ψt〉
∂t

= −iĤSys |ψt〉+ (σAz + σBz )xt |ψ〉 − (σAz + σBz )2

∫ t

0

dsM [x∗txs] |ψt〉 .

(4.34)

In the next section, the ensemble dynamics of this system will be developed from the

differential equation (4.32), revealing the entanglement evolution of the qubits as a

function of correlation strength, κ.

4.2 Deriving the Master Equation

As of yet, the stochastic dynamics of the qubits in the presence of quantized corre-

lated noise have been developed by deriving the QSD equation. Up until now, the

statistical properties of the noise have been kept general, but will later be evaluated

for non-Markovian noise, such as Ornstein-Uhlenbeck noise or that of a thermal en-

vironment. The memory of the environment will be contained in the terms defined

as X(t) ≡
∫ t

0
dsM [x∗txs] and R(t) ≡

∫ t
0
dsM [r∗t rs] and will have a significant effect on

the entanglement dynamics of the system. The ensemble dynamics of the qubits will

be solved for via the reduced density operator, which averages over all possible real-

izations of noise, ρS = M [|ψt〉 〈ψt|]. Deriving the time dependence of this operator,

the master equation, will provide the means for the calculation of the entanglement
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evolution.

Simply taking the derivative of the reduced density operator with respect to

time, ρ̇S = M [|ψ̇t〉 〈ψt|] +M [|ψ〉 〈ψ̇|] and inserting the dynamic information from Eq.

(4.32) results in the following master equation:

ρ̇S = −i[ĤSys, ρS] + (σAz + κσBz )M [xt |ψt〉 〈ψt|]− (σAz + κσBz )2X(t)ρ

+ (1− κ)σBz M [rt |ψt〉 〈ψt|]− (1− κ)2(σBz )2R(t)ρ+H.C.

(4.35)

Because xt and rt are statistically independent by definition, the mean noise terms

are:

M [xt |ψt〉 〈ψt|] =

∫ t

0

dsM [xtx
∗
s]M

[
δ |ψt〉 〈ψt|

δx∗s

]
(4.36)

M [rt |ψt〉 〈ψt|] =

∫ t

0

dsM [rtr
∗
s ]M

[
δ |ψt〉 〈ψt|

δr∗s

]
. (4.37)

In this new representation in terms of xt and rt, the functional derivatives will once

again benefit from applying the O-operator ansatz. By inspection of Eq. (4.32), it is

apparent that the O-operators will take on the form

δ |ψt〉
δxs

= ÔC(t, s, x, r) |ψt〉 = (σAz + κσBz ) |ψt〉 (4.38)

δ |ψt〉
δrs

= ÔD(t, s, x, r) |ψt〉 = (1− κ)σBz |ψt〉 . (4.39)

as will be elaborated in Appendix B. Ultimately, the master equation governing the
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qubit dynamics in the presence of non-Markovian correlated noise is

ρ̇S = −i[ĤSys, ρS] + 2Re{X(t)}(σAz ρSσAz − ρS)

+ 2(κ2Re{X(t)}+ (1− κ)2Re{R(t)})(σBz ρSσBz − ρS)

+ 2κRe{X(t)}(σAz ρSσBz + σBz ρSσ
A
z )

− 2κX(t)σAz σ
B
z ρS − 2κX∗(t)ρSσ

A
z σ

B
z . (4.40)

It recovers the master equation for two qubits interacting with local noises that are

statistically independent when κ = 0,

ρ̇S = −i[ĤSys, ρS] + 2Re{X(t)}(σAz ρSσAz − ρS)

+ 2Re{R(t)}(σBz ρSσBz − ρS) (4.41)

as well as the master equation for two qubits that feel as if they are in a common

bath due to the full correlation of their local noises when κ = 1,

ρ̇S = −i[ĤSys, ρS] + 2Re{X(t)}(σAz ρSσAz − ρS) + 2Re{X(t)}(σBz ρSσBz − ρS)

+ 2Re{X(t)}(σAz ρSσBz + σBz ρSσ
A
z )

− 2X(t)σAz σ
B
z ρS − 2X∗(t)ρSσ

A
z σ

B
z . (4.42)

In the following sections, the master equation in Eq. (4.40) will be solved for specific

types of non-Markovian noise and the exact entanglement dynamics will be revealed.

In the following sections, the master equation in Eq. (4.40) will be solved

for specific types of non-Markovian noise and the exact entanglement evolution will

be revealed for the initial reduced density operator in the special X-form matrix, as
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recalled from Chapter 3,

ρa =
1

2



a 0 0 a

0 (1− a) (1− a) 0

0 (1− a) (1− a) 0

a 0 0 a


, (3.16)

which represents a large spectrum of entangled states for 0 ≤ a ≤ 1. The measure of

entanglement used throughout is the Concurrence [16], C(ρ), which ranges from zero

to one and is quite useful for its ease of calculation. The initial state in Eq. (3.16)

represents a range of entangled states, C(ρa) = Max{0, |2a−1|}, which will be shown

in the following section to be greatly affected by correlated noise.

4.21 Results: Ornstein-Uhlenbeck Noise

Characterizing environmental noise as an Ornstein-Uhlenbeck process pronounces it

to be a continuous random variable which drifts toward a long-term mean value,

satisfying an exponentially decaying correlation function, α(t−s) = γ
2
e−γ|t−s| [57, 58].

The parameter γ controls the correlation time of the environment and consequently

impacts the memory of the system dynamics as well. In the limit that γ goes to

infinity, results in the Markov regime are recovered, which coincide with the semi-

classical correlated white noise model presented in Chapter 3. Here, the focus is

on non-Markovian noise for which the correlation time of the environment becomes

quite long and memory effects become strong, impacting the system entanglement,

as depicted in Figure 4.2 for the maximally entanglement Bell state |Φ±〉 under phase

relaxation from κ = 0.5 correlated Ornstein-Uhlenbeck noises. When γ is large, the

concurrence curve reflects the rapid decay of entanglement that is reminiscent of
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Markovian environments. The non-Markovian case, γ = 0.1 causes the entanglement

to decay more slowly and nearly doubles the time it takes the qubits to disentangle,

making it evident why studies of non-Markovian systems are quite relevant.
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Figure 4.2: Entanglement dynamics of the Bell state |Φ±〉 for various autocorrelation
times governed by the memory parameter γ. The different effects of Markovian and
non-Markovian entanglement evolutions are portrayed.

In Figure 4.3, the entanglement dynamics for various initial states are plotted

on the timescale of the system dynamics, ωt, for various levels of correlated noise

governed by parameter κ. It depicts a very similar result to that of the semiclassical

model with Markovian environments presented in Chapter 3. Although correlated

noise does not improve entanglement conditions for the |Ψ±〉 state, it remarkably

preserves the entanglement of the the Bell state |Φ+〉 as well as the X-form matrix with

a = 1/3 when the environments were fully correlated, κ = 1. As the environments

drift farther away from full statistical correlation, the effects of local decoherence

gradually begin to take over, resulting in the eventual death of entanglement. For

entangled states with a < 1
2
, noise that is almost fully correlated allows the qubits

to remain at a high level of entanglement at times much longer than the system’s
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Figure 4.3: Entanglement dynamics for qubits interacting with correlated Ornstein-
Uhlenbeck noise. The various effects of correlated noise are displayed by varying the
correlation parameter, κ.

dynamic timescale, as illustrates in Figure 4.4. This pronounces correlated noise

as a potential solution against the disentanglement of qubits in a non-Markovian

dephasing environment. In the next section, unique effects will arise with a complex

bath correlation function that is also temperature-dependent.

4.22 Results: Temperature-Dependent Ohmic Bath

One of the most common causes of decoherence in an open quantum system is fric-

tional effects from a thermal reservoir. Bose et al. demonstrated a growth of entangle-

ment between a single qubit and a large thermal field [66], implying a further distrac-

tion from qubit-qubit entanglement. The inevitable fate of entangled qubits in the

presence of local thermal baths is the sudden death of entanglement [39, 40, 41, 62, 72].

However, two originally separable qubits in a common thermal field were shown to

gain a small amount of entanglement [60, 85, 86], showing great promise for the pos-

itive influence of correlated noise. A general temperature dependent bath correlation
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Figure 4.4: For fully correlated Ornstein-Uhlenbeck noise, κ = 1, the entanglement
dynamics are revealed for the spectrum of initial states in the X-form matrix (3.16)
as a function of parameter a. The class of entangled states described by a < 1

2
is

protected by correlated noise.

function in the continuous frequency domain is of the form [55, 46, 81]

α(t, s) = 2~
∫ ∞

0

dωJ(ω)

[
coth

(
~ω

2kBT

)
cos(ω(t− s)) + i sin(ω(t− s))

]
(4.43)

where kBT is the thermal energy of the environment and J(ω) is the spectral density.

The environment can be further modeled as an Ohmic bath [82], having a spectral

density of the form J(ω) = ωe−ω/ωc . This represents a linear dependence on the

frequency of the field, which is only an accurate model at very low frequencies that are

much smaller than some cutoff frequency, ωc, so the decaying function e−ω/ωc imposes

this low frequency condition. The parameter β, commonly defined as β = 1
kBT

, will

reflect the temperature dependence of the entanglement in Figures 4.5 and 4.6.

Generally, low temperatures, β = 10, are more pleasing to entanglement com-

pared to high temperatures, β = 0.1, as depicted in Figure 4.5. A high temperature
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Figure 4.5: Entanglement dynamics of the Bell state |Ψ±〉 for various temperatures
governed by the parameter β. Low temperatures are revealed to be most beneficial
for the measure of entanglement.

bath is associated with more rapid varying noise, which would more aggressively

cause the decoherence of the composite qubit state and a disentanglement in a time

much shorter than the timescale of the system dynamics. Based on this notion, the

entanglement evolution for various levels of correlated temperature-dependent noise

are calculated and plotted in Figure 4.6 for β fixed at β = 10.

The effects of temperature dependent noise are quite similar to that of Ornstein-

Uhlenbeck noise, making correlated noise quite generally a good recipe for enhanc-

ing entanglement between qubits. It should be noted, however, that local thermal

environments cause the qubits to disentangle in a much shorter time than Ornstein-

Uhlenbeck noise. In fact, even at the very low thermal energy β = 0.1, the qubits

still tend to disentangle on the timescale of ω or even shorter. The necessity for

correlated noise then becomes evident for the state |Φ+〉, which is able to remain

maximally entangled for all time. Special features arise from the complex noise that
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Figure 4.6: Entanglement dynamics for qubits interacting with correlated Ohmic
thermal baths at low temperature, β = 10. The various effects of correlated noise are
displayed by varying the correlation parameter, κ, and even present the generation
of entanglement beyond its initial value for certain mixed states.

become apparent for off-diagonal terms b in the general initial state of the form

ρmixed(0) =
1

2



a b b a

b (1− a) (1− a) b

b (1− a) (1− a) b

a b b a


. (4.44)

In order to maintain positivity of the reduced density matrix, the parameter b must

obey the constraints b ≤
√
a(1− a). The entanglement dynamics for the mixed state

(4.44) with specific values a = 2
7

and b = 6
14

are plotted in Figure 4.6(c) for various

levels of correlation. Exceptionally, correlated temperature-dependent phase noise

causes the generation of entanglement beyond the initial measure and is followed by

a residual entanglement at the original value. This interesting feature is exhibited by

a wide range of initial states, as is depicted in Figure 4.7 as a function of a with b

fixed at its maximum value b =
√
a(1− a).
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Figure 4.7: For fully correlated low-temperature noise, κ = 1, the entanglement
dynamics are revealed for the spectrum of initial states in the general form matrix
(4.44) as a function of parameter a. The class of entangled states described by a < 1

2

all have the remarkable ability to generate entanglement beyond its initial value.

Quite remarkably, even entangled qubits that undergo ESD can have a small

regeneration of entanglement when the thermal environments are fully correlated.

The generation of entanglement is often a delicate feature that arises due to memory

effects and quickly oscillates to zero. Having a deep understanding of what causes

this regeneration would be valuable insight into the ability to control and generate

entanglement.

From the current analysis, entanglement generation has strictly been a prop-

erty of a complex bath correlation function of the type α(t, s) = αR(t, s) + iαI(t, s).

For this particular model, the value of the off-diagonal elements of the reduced density

operator governed by parameter b are what controlled the magnitude of the revival

peak. When b = 0, there is no generation of entanglement, whereas when b is at

the maximum value, b =
√
a(1− a), the peak is at its highest. Accordingly, ana-

lyzing elements ρ12, ρ13, ρ24, and ρ34 will reveal much information about this special
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generation feature.

0 0.5 1 1.5

!0.1

0

0.1

(a) Thermal environment

! t
 

 

C(")
Im{"34="24}
Im{"43="42}
Im{"13="12}
Im{"31="21}

0 0.5 1 1.5

!0.1

0

0.1

(b) Ornstein!Uhlenbeck Noise

! t
 

 

C(")
Im{"34="24="12="13}
Im{"43="42="21="31}

Figure 4.8: The generation of entanglement for a separable state is a feature of a
complex bath, such as thermal noise, caused by the fluctuating imaginary part of the
coherence.

Generally, the density matrix elements, ρnm, represent the amount of the en-

semble that is in each possible qubit scenario,

ρ =
∑
n,m

ρnm |n〉 〈m| , (4.45)

where the indices n andm run through all possible basis elements {|++〉 , |+−〉 , |−+〉 , |−−〉}.

Elements ρnn then represent the population of each basis state, leaving ρnm to de-

scribe the amount of the ensemble in various combinations of superposition qubit

states. Specifically, ρ12 is the amount of the ensemble in state |++〉 〈+−|, which

represents the state (|+〉 〈+|)A for qubit A and (|+〉 〈−|)B for qubit B. A physical

interpretation of ρ12 is then the potential for qubit A to be in the state |+〉A while

qubit B remains in a superposition state. Accordingly, all off-diagonal elements in

the X-form matrix (4.44) with parameter b represent the amount of the ensemble that
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has one qubit in a specific state and the other qubit in a superposition state. It is the

imaginary part of these density matrix elements that determine whether the qubits

are able to generate entanglement or not and is therefore only tapped into from a

complex bath correlation function, as shown in Figure 4.8. Here, the evolution of the

imaginary part of the elements ρ12, ρ13, ρ24, ρ34, and their conjugates are compared

between a thermal environment and Ornstein-Uhlenbeck noise for the separable state

a = b = 1
2
.

For the temperature dependent environment, the generation of entanglement

from a separable state is due to the fast fluctuation and crossings of the imaginary

part of the emphasized density matrix elements. Under Ornstein-Uhlenbeck noise, no

such generation is possible for the qubits and the complex terms slowly and asymptot-

ically approach zero without ever crossing. Taking a closer look at term ρ12 |++〉 〈+−|

of the ensemble state in (4.45) once again, (|+〉 〈+|)A can be regarded as the pop-

ulation of the |+〉A state and must contribute to the real part of ρ12. In contrast,

(|+〉 〈−|)B governs the coherence of the superposition state of qubit B and therefore

must contain the complex part of ρ12. In conclusion, it is asserted that the generation

of entanglement between qubits interacting with correlated Ohmic phase noise is due

to the fast fluctuation of single-qubit imaginary coherence. This phenomena will be

studied in depth in future work.

4.3 Summary

The model of correlated noise is designed to behave as separate local baths when the

environments are uncorrelated and a common bath to the qubits when the environ-

ments are fully correlated. Physically, correlated noise depends on the structure of

the cavity as well as the qubit’s interaction with its modes. Symmetry usually plays
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a very important role in the effectiveness of most entanglement schemes. Ideally, if

the cavities of the distant qubits can be made identically, such as the same number

of modes at equivalent frequencies and the same mean number of photons in each

mode, then the local noises will become correlated and allow for the enhancement

and sometimes full preservation of entanglement.

The effects of correlated noise on the entanglement dynamics of the qubits

were analyzed after deriving the convolutionless master equation for non-Markovian

dephasing environments, specifically Ornstein-Uhlenbeck noise and a temperature-

dependent Ohmic bath. Overall, correlated non-Markovian noise enhanced a wide

range of initially entangled qubit states, making correlated environments an optimal

scenario for applications in quantum information science. In addition, both Ornstein-

Uhlenbeck noise and temperature-dependent noise showed the ability to preserve

entanglement indefinitely for the initial states in the special X-form matrix (3.16)

having a < 1
2
, including the Bell state |Φ+〉. Remarkably, qubits in these states

interacting with the thermal correlated environments experienced the generation of

entanglement beyond the initial value, even for an initially separable state. It was

demonstrated that this effect arises only for a complex bath correlation function,

affecting the coherence terms of the reduced density matrix. It was concluded that

the generation of qubit entanglement in this specific model of correlated noise is due

to ”imaginary coherence fluctuations.”

Future work on this topic includes the analysis of correlated amplitude noise.

Even though the dissipative Markov case in Chapter 3 showed to be unreceptive to

correlated noise, there are many interesting features that arise from two qubits coupled

to a common non-Markovian bath that will make correlated amplitude noise highly

effective. However, as will be demonstrated in the following chapter, these facets only

come out of the exact solution of the model. Because in the dissipative model the
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Lindblad operator does not commute with the system Hamiltonian, [ĤSys, L] 6= 0, the

O-operator ansatz becomes extremely difficult to develop, making an exact solution

to the problem hard to find. The problem has been solved exactly for the first time

in the following chapter.
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Chapter 5

Fast Tracking of Entanglement via Quantum Trajectories

In the previous Chapters, it has been established that many important realizations

in quantum information, such as quantum computing, quantum communication and

quantum cryptography, rely on the control and generation of entanglement [1]. How-

ever, the true question arises in how to measure or compute the entanglement of

a quantum system in order to effectively use that information in application. For

a quantum open system described by a reduced density matrix, most definitions of

entanglement pertain to a property of an ensemble, such as entanglement of forma-

tion [13, 15], E(ρ), and concurrence [16], C(ρ), however for possible applications in

quantum information processing, the preparation of and measurement on a mixed

entangled state would be quite cumbersome. A more approachable method would be

to take advantage of the statistical nature of the quantum system and average over

many realizations of a single system in order to infer information about the entan-

glement of the ensemble. Recently, entanglement unravellings in the Markov regime

have been proposed [87, 88, 89]. For a general non-Markovian quantum open system,

such a pure state approach is particularly useful for the numerical simulation of the

tracking of entanglement information, which is known to be a hard problem due to

the lack of a computable entanglement measure and a viable non-Markovian master

equation [90, 91, 92, 93, 94].

In this chapter, our research serves as a first example of the efficient estima-

tion of entanglement evolution in non-Markovian regimes without using the system

density matrix. We derive the exact quantum state diffusion (QSD) equation for a

pure state to estimate the entanglement evolution of a two-qubit system coupled to
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a bosonic heat bath at zero temperature [52, 56, 95, 96]. For a general multi-qubit

system, employing quantum trajectories over density matrices becomes enormously

advantageous in terms of computational exhaustion. Here, the fundamental model

of two qubits interacting with a common non-Markovian environment, as depicted

in Fig. 5.1, is extensively analyzed by solving the non-Markovian Quantum State

Diffusion equation for exact quantum trajectories. As will be shown in the results of

this work, the entanglement computed from the trajectories, E(ψ), generally provides

useful information about the status of the actual entanglement described by the sys-

tem density matrix, E(ρ). For some initial states, the trajectory entanglement gives

an almost identical estimation of the system entanglement. This problem is especially

relevant for superconducting qubits, which are known to be strongly coupled to their

dense environments [23, 22, 21].

 

A B 

T=0 

Figure 5.1: Model System 4

5.1 Deriving the QSD Equation

The model representing the most fundamental setup of a quantum computing scheme

consists of two uncoupled qubits with respective transition frequencies ωA and ωB,

which are coupled to a common zero-temperature heat bath via the interaction Hamil-
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tonian HInt in the following total Hamiltonian:

HTot = HSys +HBath +HInt (5.1)

HSys =
ωA
2
σAz +

ωB
2
σBz (5.2)

HBath =
∑
λ

ωλa
†
λaλ (5.3)

HInt =
∑
λ

(
g∗λLAa

†
λ + gλL

†
Aaλ

)
+
∑
λ

(
f ∗λLBa

†
λ + fλL

†
Baλ

)
(5.4)

where LA and LB are Lindblad operators describing the interaction of the qubits

A and B with the heat bath, respectively. To explore the effect of asymmetry on

the entanglement of the qubits, suppose that the coupling constants of the qubits to

the bath differ by a scalar multiple, fλ = κgλ, making κ a control parameter that

describes the ratio of the qubits’ coupling strengths, (0 ≤ κ ≤ 1). It follows that the

total Lindblad operator of the system is defined to be L ≡ LA + κLB such that the

time-dependent Schrödinger equation in the interaction picture of the bath is:

∂ |ΨTot〉
∂t

= −iHsys |ΨTot〉 − iL
∑
λ

g∗λa
†
λe
iωλt |ΨTot〉 − L†

∑
λ

gλaλe
−iωλt |ΨTot〉 (5.5)

where |ΨTot〉 represents the state vector for of the entire open quantum system.

Because the bath is at zero temperature, it can be inferred that |ΨTot〉 is the

tensor product of the system wavefunction and the environmental state

|ΨTot〉 = |ψS〉 ⊗ |z〉 , (5.6)

where |z〉 = |z1〉 ⊗ |z2〉 ⊗ · · · ⊗ |zλ〉 ⊗ · · · is the total environment state for which all

modes are initially in the vacuum state, |zλ〉 = |0λ〉, and |zλ〉 is a Bragmann coherent

state. Under this representation, the annihilation and creation operators in Eq. (5.5)
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can act on their appropriate environment eigenstates,

aλ |zλ〉 = zλ |zλ〉 (5.7)

a†λ |zλ〉 =
∂

∂zλ
|zλ〉 (5.8)

where |zλ|2 is the mean number of photons per mode. By then projecting Eq. (5.5)

onto the total environment state, the resulting differential equation for the quantum

state of the qubits, |ψS〉 = 〈z|ΨTot〉, accounts for their interaction with every mode

of the environment:

∂ |ψS〉
∂t

= −iHSys |ψS〉 − iL
∑
λ

gλzλe
iωλt |ψS〉 − iL†

∑
λ

g∗λe
−iωλt∂ |ψS〉

∂zλ
(5.9)

For a large number of environmental modes, this equation is extremely difficult to

solve exactly. It instead becomes convenient to model the collective effect of the

environment as a random Gaussian noise variable defined as

zt ≡ −i
∑
λ

gλzλe
iωλt, (5.10)

which has a mean value equal to zero, 〈zt〉 = 0, a variance equal to one, 〈z2
t 〉−〈zt〉

2 = 1,

and is a manifestation of how the qubits couple to each mode and the mean number

of photons per mode.

Inserting the noise variable into Eq. (5.9) will transform it into a stochastic

differential equation where the qubit wavefunction will now depend explicitly on the

noise, |ψS〉 = |ψt(z)〉 such that

∂ |ψt(z)〉
∂zλ

=

∫ t

0

ds

(
δ |ψt(z)〉
δzs

)(
∂zs
∂zλ

)
. (5.11)
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The third term in Eq. (5.9) will then be expressed as

−i
∑
λ

g∗λe
−iωλt∂ |ψ〉

∂zλ
= −

∫ t

0

ds
(
|gλ|2e−iωλ(t−s)) δ |ψ〉

δzs
(5.12)

= −
∫ t

0

dsM [z∗t zs]
δ |ψ〉
δzs

(5.13)

where the bath correlation function has been derived as1

M [z∗t zs] =

∫
d2z

π
e−|z|

2

z∗t zs =
∑
λ

|gλ|2e−iωλ(t−s) (5.14)

due to the identity in the Bargmann coherent state representation,

∫ t

0

ds
d2zλ
π

e−|zλ|
2

z∗λzλ = 1. (5.15)

The formal linear QSD equation [52] describing the stochastic dynamics of the quan-

tum state of the qubits, |ψt〉 = |ψt(z)〉, is therefore given by

∂ |ψt〉
∂t

= −iHSys |ψt〉+ Lzt |ψt〉 − L†
∫ t

0

dsM [z∗t zs]
δ |ψt〉
δzs

. (5.16)

Central to the application of the QSD equation is to replace the functional derivative

with a time-local operator, termed as the O-operator, such that

δ |ψt〉
δzs

= Ô(t, s, z) |ψt〉 , (5.17)

with initial condition Ô(t = s, s, z) = L. In principle, the existence of the O-operator

can be seen from the stochastic propagator, |ψt(z)〉 = G(t, z) |ψ0〉 (See Appendix A),

but in practice it is quite difficult to find the explicit O-operator. For the specific

1The notation d2z and |z|2 has been introduced in Chapter 4, Section 4.1.
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two-qubit model presented here, an exact equation for the O-operator is derived upon

satisfying the consistency condition [52]:

δ

δzs

(
∂ |ψt〉
∂t

)
=

∂

∂t

(
δ |ψt〉
δzs

)
. (5.18)

For this particular model, the consistency condition is expressed as

δÔ(t, s, z)

δt
=
[
−iHsys + Lzt − L†O(t, z)

]
− L† δO(t, z)

δzs
(5.19)

where O(t, z) =
∫ t

0
dsα(t−s)Ô(t, s, z). With the initial condition, it ensures that |ψt〉

is a single-valued function and thus establishes a solvable QSD equation.

The solution to the QSD equation (5.16), |ψt〉, gives a single trajectory of the

qubit state in reaction to a particular realization of the noise. Upon averaging the

probability density over all possible quantum trajectories, the reduced density matrix

of the qubit system is recovered, ρt = M [|ψt〉 〈ψt|], and the actual entanglement evo-

lution of the system can be calculated, E(ρ). However, in experimental practices, the

preparation and measurement of an ensemble of qubits becomes extremely cumber-

some, especially for the eventual application in quantum computing where scalability

becomes an issue. Instead, it would be extremely beneficial to have a single quantum

system that evolves according to the stochastic differential equation (5.16), allowing

one to calculate a single entanglement trajectory via the Concurrence [16]

C(ψt) = | 〈ψt|σAy ⊗ σBy |ψ∗t 〉 |. (5.20)

After a significant number of realizations are produced, taking the mean over all

concurrence trajectories produces a value that is pertinent to the entanglement of the
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ensemble system

Cψ = M [C(ψt)]. (5.21)

In this way, one can efficiently compute the approximate entanglement of a quantum

open system without invoking the explicit form of the density matrix and, in practice,

without need of an ensemble of qubits. The actual entanglement of the ensemble,

represented by the density matrix, is calculated through the concurrence [16]

C(ρ) = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (5.22)

where λi (i = 1, 2, 3, 4) are the eigenvalues of the matrix % = ρ(σAy ⊗ σBy )ρ∗(σAy ⊗ σBy )

in descending order. Upon direct comparison, it is clear that Cψ cannot be less

than or equal to the true entanglement C(ρ) due to the concavity of the concurrence

calculation [16, 39]. However, Cψ can be used as an upper bound of the actual

entanglement, such that if Cψ ≈ 0 then C(ρ) ≈ 0. In fact, as shown in the following

section, Cψ provides an almost perfect estimation of the actual entanglement for some

initial states. Above all, the calculation of Cψ is much simpler than that of C(ρ),

especially for systems consisting of a large number of qubits. This pronounces Cψ to

be a good indicator for the actual behavior of the entanglement and will be explored

in the upcoming models.

5.2 Non-Markovian Exact Entanglement Trajectories

In this section, two causes of qubit decoherence are investigated: dissipation and

pure phase relaxation of the quantum state, both great challenges to maintaining

robust bipartite entanglement. In both cases, the exact time-local O-operators will

be derived, allowing for the efficient solution of the QSD equation [52]. Although
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the linear equation in (5.16) preserves the norm of the quantum state on average,

M [〈ψt|ψt〉] = 1, there is always the potential to have computational issues with

sampling and, in many cases, it requires a large number of realizations to ensure

efficiency. On the other hand, by deriving a dynamical equation for the normalized

state vector, |ψ̃t〉 =
|ψt〉
||ψt||

, the norm will be robustly preserved throughout every

trajectory. The dynamics of the normalized quantum state of the qubits, commonly

refered to as the nonlinear QSD equation, is presented as [52]:

∂ |ψ̃t〉
∂t

= −iHSys |ψ̃t〉+ (L − 〈L〉t)z̃t |ψ̃t〉

−
∫ t

0

dsα(t, s)
[
(L† − 〈L†〉t)Ô(t, s, z̃)− 〈(L† − 〈L†〉t)Ô(t, s, z̃)〉t

]
|ψ̃t〉 , (5.23)

where 〈A〉t = 〈ψ̃t|A|ψ̃t〉 is the quantum expectation value of operator A and the

shifted noise variable is z̃t = zt +
∫ t

0
dsα∗(t, s) 〈L†〉s.

In addition, the non-Markovian regime is explored by modeling the bath corre-

lation function as an Ornstein-Uhlenbeck process such that α(t, s) = γ
2
e−γ|t−s|. This

continuous random process drifts toward a stationary long-term mean and is useful

for viewing various memory effects via the parameter γ, which describes the rate at

which noise that is progressing in time t becomes less and less correlated to its value

at a particular past time s. As γ grows very large and the correlation time τcorr = 1
γ

becomes very short, the transition from non-Markovian to Markovian regimes will be

viewed and it will be found that certain features are lost under the Markov approxi-

mation [47, 97, 7].

5.21 Dissipative Model

A dissipative interaction, which causes the quantum state to lose energy, is denoted

by the Lindblad operators LA = σA− and LB = σB− such that L = σA− + κσB− . For the
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very first time, an exact QSD equation for the dissipative interaction model has been

established here[84]. By the consistency condition of Eq. (5.18), the exact operator

Ō(t, z) ≡
∫ t

0
dsα(t, s)Ô(t, s, z) is presented as

Ō(t, z) = A(t)σA− +B(t)σB− + F (t)σAz σ
B
− +G(t)σBz σ

A
− + i

(∫ t

0

ds′P (t, s′)zs′

)
σA−σ

B
− ,

(5.24)

which is valid for an arbitrary bath correlation function. By imposing the Ornstein-

Uhlenbeck bath correlation function, a set of differential equations for the coefficients

of the Ō-operator are derived (See Appendix C):

dtA(t) =− γA(t) +
γ

2
+ iωAA(t) + A(t)2 + 2κF (t)G(t) +G(t)2 − κ

2
iQ(t),

dtB(t) =− γB(t) +
γκ

2
+ iωBB(t) + κB(t)2 + 2F (t)G(t) + κF (t)2 − 1

2
iQ(t),

dtF (t) =− γF (t) + iωBF (t) + F (t)[A(t) +G(t)] +B(t)[G(t)− A(t)]

+ 2κB(t)F (t)− 1

2
iQ(t),

dtG(t) =− γG(t) + iωAG(t) + κF (t)[A(t) +G(t)] + κB(t)[G(t)− A(t)]

+ 2A(t)G(t)− κ

2
iQ(t),

dtQ(t) =− 2γQ(t) + i(ωA + ωB)Q(t) + 2[A(t) + κB(t)]Q(t)− iγ[F (t) + κG(t)],

along with the explicit solution

P (t, s′) = −2i[F (t) + κG(t)] exp

{∫ t

s′
ds[−γ + iωA + iωB + 2A(s) + 2κB(s)]

}

and the initial conditions A(0) = B(0) = F (0) = G(0) = Q(0) = 0. It should be

noted that when κ = 1 and ωA = ωB, A(t) = B(t) and F (t) = G(t), representing a

highly symmetrical setup where qubit A and qubit B are interchangeable, a feature
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known to be optimal for entanglement. Throughout the rest of the chapter, it will be

assumed that the qubits share the same transition frequency, ωA = ωB = ω.

Knowledge of the exact equations for the O-operator allows one to solve the

nonlinear QSD Equation for various unravelings of the time evolution of the qubits

initially in the maximally entangled Bell States, |Ψ±〉 = 1√
2
{|++〉 ± |−−〉} for qubits

with correlated spins and |Φ±〉 = 1√
2
{|+−〉 ± |−+〉} for qubits with anti-correlated

spins. In the interest of direct comparison to the exact case, the Ō operator in the

Post-Markov approximation to is derived as

ŌPM = (f0(t) + iωf1(t))L − f2(t)(σAz + κ2σBz )L, (5.25)

where

f0(t) =

∫ t

0

α(t, s)ds,

f1(t) =

∫ t

0

α(t, s)(t− s)ds,

f2(t) =

∫ t

0

∫ s

0

α(t, s)α(s, u)(t− s)duds. (5.26)

The entanglement computed from the exact mean trajectory method, Cψ is compared

to that under the Post-Markov approximation, CPM(ψ), as well as the entanglement

of the ensemble, C(ρ), in Fig. 5.2. For both initial states, |Ψ+〉 in (a) and |Φ+〉 in (b),

the actual entanglement C(ρ) displays the repeated revival and death of entanglement

known to the two-qubit model [85, 98, 99], and solved for exactly for the first time

here. These trends are exhibited by the exact mean entanglement trajectory Cψ,

whereas in contrast, applying the Post-Markov approximation removes all revival

features of the curve. This figure demonstrates the dependence of the theory on

the initial qubit state, where |Φ+〉 provides a much closer approximation than |Ψ+〉.
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Figure 5.2: Dissipative Model: The exact Cψ is compared to ensemble calculations
in the non-Markovian regime, C(ρ), and trajectory methods under the Post-Markov
approximation, CPM(ψ) with κ = 1 and γ = 0.3 for (a) |ψ0〉 = |Ψ+〉 and (b) |ψ0〉 =
|Φ+〉

However in any case, Cψ acts as an upperbound for the exact entanglement C(ρ),

giving valuable information about the general trends of the entanglement evolution,

such as the regeneration of entanglement and entanglement sudden death. Upon

taking a closer look at Cψ for various levels of coupling strengths and correlation

times in Fig. 5.3 and Fig. 5.4, many interesting attributes of this model are revealed

and the optimal conditions for entanglement are discussed.

For initial state |ψ0〉 = |Ψ+〉, Fig. 5.3(a) highlights the significant revival fea-

ture of the equal couplings case, κ = 1, which shrinks as the coupling strength of qubit

B is decreased. However, for this model, the asymmetry of the coupling constants

causes the entanglement to decay at a much slower rate and also maintains the qubits

in a higher level of entanglement for a significant period of time. This is also due to

the memory effects of the non-Markovian environment with γ = 0.3, which generally

allows the entanglement to remain non-zero for an extended time. In Fig. 5.3(b), the

mean entanglement trajectory is compared over various correlation times for the case



75

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

! t

M
[ C

("
) ]

(a) #=0.3

 

 

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1
(b) $=1

! t

M
[ C

("
) ]

 

 

#=0.1
#=0.5
#=1
#=5

$=0
$=0.25
$=0.5
$=1

Figure 5.3: Dissipative Model: For |ψ0〉 = |Ψ+〉, Cψ over 1000 realizations is compared
over (a) various values of κ for fixed γ = 0.3 and (b) various values of γ for fixed
κ = 1.

of qubits with symmetrical coupling, capturing the transition from non-Markovian to

Markovian regimes as γ becomes large. It is clearly shown that the revival peak of

the entanglement grows as we tend toward non-Markovian conditions and eventually

oscillates very close to an entangled state that will not decay, allowing one to main-

tain a highly entangled state over a long period of time when large memory effects

are present. The importance of non-Markovian environments becomes apparent in

comparison to the Markovian case, γ = 5, where the qubits are plagued with a swift

decoherence and no chance for rebirth.

In Fig. 5.4(a), long time entanglment evolution from initial state |Φ+〉 is il-

lustrated for various values of κ and fixed γ = 0.3, where many revival peaks are

witnessed. Similar to the previous case of initial state |Ψ+〉, tall revival peaks are

displayed for symmetrical couplings, however they come at the expense of a faster

disentanglement. Once again, the κ = 0 case reveals a much slower entanglement

decay and remains non-zero even for long times. Comparing the effects of memory on

the entanglement dynamics, Fig. 5.4(b) again demonstrates that a very large corre-

lation time allows the quantum state to remain highly entangled for extended times.
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Figure 5.4: Dissipative Model: For |ψ0〉 = |Φ+〉, Cψ is compared over (a) various
values of κ for fixed γ = 0.3 for long times and (b) various values of γ for fixed
κ = 0.25.

An interesting difference for this initial state is that even for fairly large γ = 5, the

rebirth of entanglement is still a dominant feature.

5.3 Dephasing Model

As another important case, a dephasing type of interaction is considered, which pro-

vides an example of pure decoherence without dissipation. Described by the two

Lindblad operators LA = σAz and LB = σBz , the consistency conditions of Eq. (5.18)

result in the noise-free exact O-operator Ô(t, s) = L = σAz + κσBz due to [Hsys,L] = 0

and L† = L. Applying the Ornstein-Uhlenbeck bath correlation function then results

in the noise-independent time-local operator Ō(t) = 1
2
(1− eγ|t|)(σAz +κσBz ) that facil-

itates a solution to the exact non-Markovian QSD equation. The mean entanglement

trajectories for the dephasing model are plotted in Figs. (5.5) and (5.6).

In Fig. 5.5(a), the dotted curve, κ = 0, represents the scenario of qubit A

interacting with the heat bath while qubit B is a free particle. As is expected of the

single-qubit dephasing channel [37, 38], the entanglement of the qubits asymptotically
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Figure 5.5: Dephasing Model: For |ψ0〉 = |Ψ±〉, Cψ over 1000 realizations is compared
over (a) various values of κ for fixed γ = 1 and (b) various values of γ for fixed κ = 1.

decays to zero. Moreover, as we introduce the interaction of qubit B to the environ-

ment through κ 6= 0, the disentanglement rate between the qubits only increases and

causes a faster death of entanglement. In Fig. 5.5(b), the very non-Markovian case,

γ = 0.01, where the memory of the system extends much further into the past, reveals

the preservation of entanglement for a considerable length of time before beginning to

decay. In the limit as γ approaches 0 one would expect entanglement to be sustained

at the maximum value eternally. As the memory of the system is shortened into the

Markov regime, the entanglement curves reveal a steeper and steeper descent toward

zero entanglement.

The same analysis was applied to qubits with initial state |Φ±〉 and shown

in Fig. 5.6. In Fig. 5.6(a) it immediately becomes apparent that when the coupling

constants of the qubits to the heat bath are equal, κ = 1, then the initially entangled

state is protected due to the symmetry between the two qubits. When the qubits

are not coupled to the modes of the heat bath in exactly the same way, κ 6= 1,

the entanglement will eventually decay to zero. Similar to the dissipative model,
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Figure 5.6: Dephasing Model: For |ψ0〉 = |Φ±〉, Cψ is compared over (a) various
values of κ for fixed γ = 1 and (b) various values of γ for fixed κ = 0.25.

Fig. 5.6(b) displays the prolonged entanglement of the qubits in the non-Markovian

case, γ = 0.01, and the faster disentanglement rate of the Markov approximation,

γ = 10.

5.4 Summary

In conclusion, the dynamical entanglement of a non-Markovian open system can be

efficiently estimated by employing exact quantum diffusive trajectories. In particular,

it has been shown that the entanglement dynamics of the system are very sensitive

to which initial state the qubits evolved from, how the qubits are coupled to the

heat bath, and the correlation time of the environment. It is emphasized here that

under the Markov approximation, the entanglement for both sets of Bell states was

characterized by fast disentanglement and suppressed revival features, whereas in the

non-Markovian regime, large revivals were witnessed and for an extensively long cor-

relation time, the qubits remained nearly maximally entangled for long times. It was

demonstrated that the optimal conditions for maintaining a high level of entangle-
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ment for long periods of time are the symmetric coupling strengths of the qubits to

the environment and for the autocorrelation time of the environment to be very long.

This again emphasizes the importance of memory effects on the dynamics of an open

quantum system and the role of symmetry on entanglement preservation.
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Chapter 6

General Conclusions and Future Work

Although the threat of environmental noise to bipartite entanglement is imminent

in open quantum systems, the research presented here sheds light on the possibility

of overcoming decoherence and preserving entanglement long enough to be used in

application. The theoretical approaches taken here present the exact entanglement

evolution of fundamental qubit systems, some derived exactly for the first time, re-

vealing the limits of certain scenarios and the most optimal situations for preserving

entanglement. In all models an optimistic future for the preservation of entanglement

was revealed.

The fundamental two-qubit local noise model, representing a basic quantum

communication scheme, is well-known to be very vulnerable to a fast disentangle-

ment, especially since local operations can in no way enhance the entanglement of

the qubits. Instead, by augmenting a global feature of the total system, one can

effectively modulate the future evolution of the entanglement. Recalling that the

only bipartite system known to naturally provide the preservation of entanglement

for certain initial states is one where the dephasing environment is common to both

qubits, it is worthwhile to transform the local noise model into one which mimics

the mutual environment. Because of the nonlocality of entanglement by definition,

providing identical local environmental conditions is enough for the qubits to perceive

themselves to be in a common bath, due to the statistical correlation which arises be-

tween the noise variables, therefore allowing for the modulation and even preservation

of entanglement.

In the semi-classical model of Chapter 3, the preliminary study in the Markov
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regime revealed a great promise for the preservation of a wide range of initial en-

tangled states via correlated phase noise. This model was explored in much more

depth in the fully quantized model of Chapter 4, additionally in the non-Markov

regime. The exact formulation of the QSD equation allowed for the construction of

correlated phase noise from first principles. It revealed the necessary conditions for

the local noises to be considered indeed fully correlated: (1) the environments must

have the same number of modes at the same eigenfrequencies, (2) the mean number

of photons per mode must be identical for both environments, (3) the qubits must

couple with the same strength to each mode. Although these conditions might seem

quite restrictive, even a very loose correlation between the local phase noises provides

an enhancement of the bipartite entanglement, making correlated noise quite gener-

ally a good recipe for improvement, especially for non-Markovian environments. The

positive effects of correlated phase noise were revealed for Ornstein-Uhlenbeck noise,

where the same class of initial states was preserved indefinitely. Most remarkably, a

thermal environment presented the ability to generate entanglement beyond its initial

value and stabilize at a finite measure.

Although the results were quite positive for overcoming decoherence due to

phase relaxation, the preliminary study of correlated amplitude noise in the semi-

classical case revealed much different results. In general, dissipation is known to be

very detrimental to bipartite entanglement, which most commonly ends up disentan-

gling in a finite time. In addition, the fast descent to zero entanglement known to

the Markov regime is often quite rigid and hard to overcome. It is then not quite

surprising that mimicking a common dissipative Markov environment with correlated

noise would not necessary improve the bipartite entanglement conditions. It in turn

caused the measure of entanglement to be reduced to less than the value it would

have with plain statistically independent classical noise. However, it is very likely
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that this is only true in the Markov regime, as a common non-Markovian dissipa-

tive bath was shown to have many entanglement revivals, which can essentially be

tapped into via correlated noise. The exact derivation of the qubit dynamics under

dissipation is quite difficult to resolve, as was shown in Chapter 5. However with the

formalism already derived, future work dedicated to solving the two qubit correlated

non-Markovian amplitude noise model will undoubtedly reveal interesting results.

As was discussed in the context of correlated noise, another very fundamen-

tal model studied in Chapter 5 was two qubits in the presence of a common non-

Markovian environment. This scheme is quite generally important for the fact that

qubits will be placed within certain devices, which all have very dense environments,

and fall victim to decoherence and disentanglement. Solving this model exactly for the

first time in the dephasing and dissipative cases shed much light on what conditions

are optimal for maintaining a high level of entanglement for such a system.

First, it was revealed that symmetry plays a very important role in the preser-

vation of entanglement. For instance, in the dephasing case, entanglement was com-

pletely preserved for the initial Bell state |Φ±〉 only when the qubits coupled with

equal strength to the modes of the environment. Any difference in coupling strengths

resulted in the eventual death of entanglement, even if very slow. In the dissipative

case, symmetrical coupling constants also provided a much slower decay of entangle-

ment for the two qubits, however never with the prospect for a full robust sustenance.

Second, by modeling the noise as an Ornstein-Uhlenbeck process, various ef-

fects of the memory of the environment were explored. The bath correlation function

quantifies how the noise at present time depends on its value at a particular time

in the past, demonstrating the strength of the environment’s ”memory.” In the case

of Ornstein-Uhelenbeck noise, the correlation exponentially decays as the noise pro-

gresses further and further ahead. The decay rate can be very slow, reflecting very
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non-Markovian systems where memory effects are strong, or a very rapid decay rate

reminiscent of the Markov regime. In all cases studied, both phase relaxation and

dissipation, all initially entangled states disentangled at a significantly slower rate

when the environment had a strong memory of previous times. In this way, the

non-Markovian regime becomes very important to study for multipartite systems for

applications in quantum information processing.

Lastly, the fast-tracking of entanglement was discussed for the first time with

respect to non-Markovian systems. Because, by definition, entanglement is a prop-

erty of the ensemble state of the qubits rather than a single trajectory, the discussion

about taking real-time measurements of entanglement on a non-Markovian system

becomes quite complicated. Instead, it was proposed in Chapter 5 that calculating

the entanglement evolution of individual trajectories of the qubits, which is stochas-

tic due to fluctuations from the noise, and then averaging over many realizations

can provide a reasonably good indication of the general trends of the actual en-

tanglement. Because of the way entanglement is calculated via the concurrence, it

is known that these mean entanglement trajectories could never exactly equal the

actual entanglement but rather provides an upperbound. For the exact two-qubit

model with a common dissipative environment, the mean entanglement trajectories

properly reproduced all trends of the actual entanglement, such as the peaks and

troughs of regeneration, and proved to be a much better approximation than the

commonly used Post-Markov approximation. In fact, for the initial state |Φ±〉, the

mean entanglement trajectories predicted an almost identical evolution of the exact

entanglement, making it extremely useful for future approximate calculations of very

complex multipartite systems.

In conclusion, there is great optimism for the robust generation and preser-

vation of entanglement for qubits in an open quantum system. While the study
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presented in this thesis extended only to a bipartite system, the study of more com-

plicated networks of qubits will reveal the limits of the many proposed applications of

quantum information science and potentially will reveal new aspects of multipartite

theory that is unimmaginable. By continuing to study these complex fundamental

systems, we inch closer to realizing the rich applications that arose from quantum

entanglement.
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Appendix A

Existence of the O-operator

Because of the nonlocal behavior of the general QSD equation proposed by

Diosi, Strunz, and Gisin [52], it becomes essential to replace the functional derivative

of the wavefunction with respect to noise with a linear time-local operator, termed

the O-operator, in order to obtain an exact solution. The existence of the O-operator

can be seen from the linear propagator Ĝ for a general QSD equation, where ψt(z) =

Ĝ(t, x∗)ψ0 [100]. Consequently,

δψt(x
∗)

δx∗s
=

[
δ

δx∗s
Ĝ(t, x∗)

]
ψ0

=

(
δ

δx∗s
Ĝ

)
Ĝ−1ψt(x

∗)

= Ô(t, s, x∗)ψt(x
∗).

At the moment, it is still unclear under what mathematical conditions an exact O-

operator can be determined, however it is known that perturbative O-operators can

always be obtained [56].

In general, it is always possible to find an approximate O-operator, for example

in the Post-Markov and Markov approximation. However, the difficult task is deriving

the exact O-operator, which, for many models, does not always have an explicit

form. Many physically interesting models have employed the O-operator approach

[56, 101, 46, 102, 68, 65, 103] and up until now, the exact O-operator has been

established only in the following cases: one qubit in a dephasing and dissipative

environment [52, 56, 101], one harmonic oscillator in Brownian motion and dissipative

environment [52, 56, 46, 102], one harmonic oscillator in Brownian motion with finite

temperature [68], a cavity mode in a dissipative environment with zero and finite
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temperature [65], and one three-level atom in a dissipative environment [103]. For

the first time, the exactO-operators have been obtained for the two qubit models, first

in the presence of non-Markovian local correlated environments (Chapter 4) and then

for the two-qubit model with a common non-Markovian dissipative and dephasing

environment (Chapter 5).
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Appendix B

Dynamic equations for the exact O-operators: Correlated Noise Model

In this Appendix, the dynamic equations governing the exact formulation of

the O-operators will be derived in full for the specific model of correlated quantized

phase noise.

In Chapter 4, the QSD equation (4.22) describing two qubits experiencing

phase relaxation due to their interaction with local noisy environments, xt and yt,

which are statistically correlated, was presented as

∂ |ψt〉
∂t

= −iĤSys |ψt〉+ σAz xt |ψt〉 − σAz
∫ t

0

ds

{
M [x∗txs]

δ |ψt〉
δxs

+M [x∗tys]
δ |ψt〉
δys

}
+ σBz yt |ψt〉 − σBz

∫ t

0

ds

{
M [y∗t xs]

δ |ψt〉
δxs

+M [y∗t ys]
δ |ψt〉
δys

}
.

(6.1)

It is of common practice to replace the functional derivative of the state vector |ψt〉

with respect to the noise variables by the time-local O-operators

δ |ψt〉
δxs

= ÔA(t, s, x, y) |ψt〉 (6.2)

δ |ψt〉
δys

= ÔB(t, s, x, y) |ψt〉 (6.3)

which have the initial conditions

ÔA(t = s, s, x, y) = σAz (6.4)

ÔB(t = s, s, x, y) = σBz . (6.5)

One can derive a set of differential equations for the time dependence of the operators
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by applying the consistency conditions,

∂

∂t

(
δ |ψt〉
δxs

)
=

δ

δxs

(
∂ |ψt〉
∂t

)
(6.6)

∂

∂t

(
δ |ψt〉
δys

)
=

δ

δys

(
∂ |ψt〉
∂t

)
(6.7)

which refer to the ordering of the derivatives and will put restraints on theO-operators

that ensure the wavefunction |ψt〉 remains a single-valued function. From Eqs. (6.6)

and (6.7) the following differential equations for the O-operators can be derived:

∂ÔA
∂t

=
[
−iĤSys, ÔA

]
+

[
σAz xt − σAz

∫ t

0

dsM [x∗txs]ÔA − σAz
∫ t

0

dsM [x∗tys]ÔB, ÔA
]

+

[
σBz yt − σBz

∫ t

0

dsM [y∗t xs]ÔA − σBz
∫ t

0

dsM [y∗t ys]ÔB, ÔA
]

− σAz
δ

δxs

(∫ t

0

dsM [x∗txs]ÔA
)
− σAz

δ

δxs

(∫ t

0

dsM [x∗tys]ÔB
)

− σBz
δ

δxs

(∫ t

0

dsM [y∗t xs]ÔA
)
− σBz

δ

δxs

(∫ t

0

dsM [y∗t ys]ÔB
)

(6.8)

∂ÔB
∂t

=
[
−iĤSys, ÔB

]
+

[
σAz xt − σAz

∫ t

0

dsM [x∗txs]ÔA − σAz
∫ t

0

dsM [x∗tys]ÔB, ÔB
]

+

[
σBz yt − σBz

∫ t

0

dsM [y∗t xs]ÔA − σBz
∫ t

0

dsM [y∗t ys]ÔB, ÔB
]

− σAz
δ

δys

(∫ t

0

dsM [x∗txs]ÔA
)
− σAz

δ

δys

(∫ t

0

dsM [x∗tys]ÔB
)

− σBz
δ

δys

(∫ t

0

dsM [y∗t xs]ÔA
)
− σBz

δ

δys

(∫ t

0

dsM [y∗t ys]ÔB
)

(6.9)

From the initial conditions in Eqs. (6.4) and (6.5) we can assume that theO-operators
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for this model are of the general form:

ÔA(t, s, x, y) = c1(t, s, x, y)σAz + c2(t, s, x, y) (6.10)

ÔB(t, s, x, y) = d1(t, s, x, y)σBz + d2(t, s, x, y) (6.11)

where the coefficients contain all possible dependence on time and noise of the O-

operator and initially c1(t, s, x, y) = d1(t, s, x, y) = 1 and c2(t, s, x, y) = d2(t, s, x, y) =

0. From experience, if any further operators besides the ones present in the Lindblad

operator are needed in the full description of the O-operator, they will arise from

the commutators in Eqs. (6.8) and (6.9). Inserting Eqs. (6.10) and (6.11) into

the differential equations for the O-operators gives the following pair of differential
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equations:

∂c1(t, s, x, y)

∂t
σAz +

∂c2(t, s, x, y)

∂t
1l =− σAz

δ

δxs

(∫ t

0

dsM [x∗txs]c1(t, s, x, y)

)
σAz

−σAz
δ

δxs

(∫ t

0

dsM [x∗tys]d1(t, s, x, y)

)
σBz − σBz

δ

δxs

(∫ t

0

dsM [y∗t xs]c1(t, s, x, y)

)
σAz

−σBz
δ

δxs

(∫ t

0

dsM [y∗t ys]d1(t, s, x, y)

)
σBz − σAz

δ

δxs

(∫ t

0

dsM [x∗txs]c2(t, s, x, y)

)
−σAz

δ

δxs

(∫ t

0

dsM [x∗tys]d2(t, s, x, y)

)
− σBz

δ

δxs

(∫ t

0

dsM [y∗t xs]c2(t, s, x, y)

)
− σBz

δ

δxs

(∫ t

0

dsM [y∗t ys]d2(t, s, x, y)

)
∂d1(t, s, x, y)

∂t
σBz +

∂d2(t, s, x, y)

∂t
1l =− σAz

δ

δys

(∫ t

0

dsM [x∗txs]c1(t, s, x, y)

)
σAz

−σAz
δ

δys

(∫ t

0

dsM [x∗tys]d1(t, s, x, y)

)
σBz − σBz

δ

δys

(∫ t

0

dsM [y∗t xs]c1(t, s, x, y)

)
σAz

−σBz
δ

δys

(∫ t

0

dsM [y∗t ys]d1(t, s, x, y)

)
σBz − σAz

δ

δys

(∫ t

0

dsM [x∗txs]c2(t, s, x, y)

)
−σAz

δ

δys

(∫ t

0

dsM [x∗tys]d2(t, s, x, y)

)
− σBz

δ

δys

(∫ t

0

dsM [y∗t xs]c2(t, s, x, y)

)
− σBz

δ

δys

(∫ t

0

dsM [y∗t ys]d2(t, s, x, y)

)
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By equating all coefficients of the operators in the above equations, it is shown that:

∂c1(t, s, x, y)

∂t
=− δ

δxs

(∫ t

0

dsM [x∗txs]c2(t, s, x, y)

)
− δ

δxs

(∫ t

0

dsM [x∗tys]d2(t, s, x, y)

)
(6.12)

∂c2(t, s, x, y)

∂t
=− δ

δxs

(∫ t

0

dsM [x∗txs]c1(t, s, x, y)

)
− δ

δxs

(∫ t

0

dsM [y∗t ys]d1(t, s, x, y)

)
(6.13)

∂d1(t, s, x, y)

∂t
=− δ

δys

(∫ t

0

dsM [y∗t xs]c2(t, s, x, y)

)
− δ

δys

(∫ t

0

dsM [y∗t ys]d2(t, s, x, y)

)
(6.14)

∂d2(t, s, x, y)

∂t
=− δ

δys

(∫ t

0

dsM [x∗txs]c1(t, s, x, y)

)
− δ

δys

(∫ t

0

dsM [y∗t ys]d1(t, s, x, y)

)
(6.15)

and

δ

δxs

(∫ t

0

dsM [x∗tys]d1(t, s, x, y)

)
=

δ

δxs

(∫ t

0

dsM [y∗t xs]c1(t, s, x, y)

)
(6.16)

δ

δxs

(∫ t

0

dsM [y∗t xs]c2(t, s, x, y)

)
=

δ

δxs

(∫ t

0

dsM [y∗t ys]d2(t, s, x, y)

)
(6.17)

δ

δys

(∫ t

0

dsM [x∗tys]d1(t, s, x, y)

)
=

δ

δys

(∫ t

0

dsM [y∗t xs]c1(t, s, x, y)

)
(6.18)

δ

δys

(∫ t

0

dsM [x∗txs]c2(t, s, x, y)

)
=

δ

δys

(∫ t

0

dsM [x∗tys]d2(t, s, x, y)

)
. (6.19)
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From the latter four equations (6.16)-(6.19) it can be deduced:

δc1(t, s, x, y)

δxs
=
M [x∗tys]

M [y∗t xs]

δd1(t, s, x, y)

δxs
δc2(t, s, x, y)

δxs
=
M [y∗t ys]

M [y∗t xs]

δd2(t, s, x, y)

δxs
δc1(t, s, x, y)

δys
=
M [x∗tys]

M [y∗t xs]

δd1(t, s, x, y)

δys
δc2(t, s, x, y)

δys
=
M [x∗tys]

M [x∗txs]

δd2(t, s, x, y)

δys

which can be inserted into equations (6.12)-(6.15) to produce:

∂c1(t, s, x, y)

∂t
=−

∫ t

0

ds

[
M [x∗txs]M [y∗t ys]

M [y∗t xs]
+M [x∗tys]

]
δd2(t, s, x, y)

δxs
(6.20)

∂c2(t, s, x, y)

∂t
=−

∫ t

0

ds

[
M [x∗txs]M [x∗tys]

M [y∗t xs]
+M [y∗t ys]

]
δd1(t, s, x, y)

δxs
(6.21)

∂d1(t, s, x, y)

∂t
=−

∫ t

0

ds

[
M [y∗t xs]M [x∗tys]

M [x∗txs]
+M [y∗t ys]

]
δd2(t, s, x, y)

δys
(6.22)

∂d2(t, s, x, y)

∂t
=−

∫ t

0

ds

[
M [x∗txs]M [x∗tys]

M [y∗t xs]
+M [y∗t ys]

]
δd1(t, s, x, y)

δys
(6.23)

From Eqs. (6.22) and (6.23), it is apparent that the time-dependence of co-

efficients d1(t, s, x, y) and d2(t, s, x, y) are independent of the coefficients c1(t, s, x, y)

and c2(t, s, x, y). Furthermore, because these coefficients have the initial conditions

d1(t = s, s, x, y) = d2(t = s, s, x, y) = 0, their solution will therefore be trivial

d1(t, s, x, y) = d2(t, s, x, y) = 0.
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Equations (6.20) and (6.21) then also become greatly simplified:

∂c1(t, s, x, y)

∂t
= 0 (6.24)

∂c2(t, s, x, y)

∂t
= 0 (6.25)

in which case the coefficients will remain constant in their initial conditions:

c1(t, s, x, y) = c2(t, s, x, y) = 1.

This concludes the derivation of the O-operators presented in Chapter 4,

ÔA(t, s, x, y) = σAz , (4.27)

ÔB(t, s, x, y) = σBz . (4.28)

The results obtained from this approach quite generally apply to all dephas-

ing models for which the Lindblad operators and the system Hamiltonian contain

combinations of σAz and σBz operators and therefore commute, [HSys, L] = 0. Under

those conditions, the O-operator can simply be concluded to be equal to the Lindblad

operator upon sight. For example, recall the QSD equation obtained in Chapter 4

after applying the ansatz for correlated noise:

∂ |ψt〉
∂t

= −iĤSys |ψt〉+ (σAz + κσBz )xt |ψt〉 − (σAz + κσBz )2

∫ t

0

dsM [x∗txs] |ψt〉

+ (1− κ)σBz rt |ψt〉 − (1− κ)2(σBz )2

∫ t

0

dsM [r∗t rs] |ψt〉 . (4.32)

By inspection, it is found that the two Lindblad operators are now L1 = σAz +κσBz and

L2 = (1− κ)σBz , which obey the properties L†1,2 = L1,2 and commute with the system
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Hamiltonian, [HSys, L1] = [HSys, L2] = 0 as well as with either other [L1, L2] = 0.

Therefore, it is known that the O-operators will simply be equal to their respective

Lindblad operators, recovering the result

ÔC(t, s, x, r) |ψt〉 = (σAz + κσBz ) |ψt〉 (4.38)

ÔD(t, s, x, r) |ψt〉 = (1− κ)σBz |ψt〉 . (4.39)

It is almost always true that the O-operator will be equal to the Lindblad

operator when the Lindblad operators commute with each other as well as the system

Hamiltonian, making an exact solution to the QSD and master equations quite easy

to obtain. In contrast, the situation becomes much more complicated when they do

not commute, as will be seen in the following appendix for the dissipative model.
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Appendix C

Dynamic equations for the exact O-operators: Common non-Markovian

Environment

In this Appendix, the dynamic equations for the coefficients of the exact O-

operator will be derived for the two qubit model, in which the qubits interact asym-

metrically to a common non-Markovian environment.

In Chapter 5, the QSD equation describes the dynamics of the pure quan-

tum state ψt under the influence of the complex stochastic Gaussian process zt was

presented as the following [55, 52]

∂ |ψt〉
∂t

= −iHSys |ψt〉+ Lzt |ψt〉 − L†
∫ t

0

dsM [z∗t zs]
δ |ψt〉
δzs

. (5.16)

This formal linear QSD equation becomes non-local because of the functional deriva-

tive with respect to noise, so the time-local non-Markovian QSD equation cannot be

derived if the functional derivative cannot be replaced with a linear operator acting

on the state vector ψt, such that

δ |ψt〉
δzs

= Ô(t, s, z) |ψt〉 . (5.17)

By the consistency condition in Eq. (5.18), one gets the equation of motion for

the O-operator:

∂Ô(t, s, z)

∂t
= [−iHSys + Lzt − L†Ō(t, z), Ô(t, s, z)]− L† δŌ(t, z)

δzs
, (6.26)

where Ō(t, z) =
∫ t

0
dsα(t, s)Ô(t, s, z) and α(t, s) = M [z∗t zs] is the bath correlation

function, which will later taken to be an Ornstein-Uhlenbeck process.
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For the dissipative model, where L = σA− + κσB− , it can be shown that the

O-operator takes the following form:

Ô(t, s, z) =a(t, s)σA− + b(t, s)σB− + f(t, s)σAz σ
B
− + g(t, s)σA−σ

B
z

+ i

(∫ t

0

ds′p(t, s, s′)zs′

)
σA−σ

B
− , (6.27)

where equations of motion for a(t, s), b(t, s), f(t, s), g(t, s), and p(t, s, s′) can be de-

rived from Eq. (6.26). It then follows that by definition of Ō(t, z) =
∫ t

0
dsα(t, s)Ô(t, s, z),

Ō(t, z) =A(t)σA− +B(t)σB− + F (t)σAz σ
B
− +G(t)σA−σ

B
z

+ i

(∫ t

0

ds′P (t, s′)zs′

)
σA−σ

B
− , (6.28)

where

A(t) ≡
∫ t

0

dsα(t, s)a(t, s),

B(t) ≡
∫ t

0

dsα(t, s)b(t, s),

F (t) ≡
∫ t

0

dsα(t, s)f(t, s),

G(t) ≡
∫ t

0

dsα(t, s)g(t, s),

P (t, s′) ≡
∫ t

0

dsα(t, s)p(t, s, s′).

It can be checked that Eq. (6.27) indeed provides a consistent solution to

Eq. (6.26). By substituting Eq. (6.27) into Eq. (6.26), the left-hand side (LHS) of it
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expands to

∂Ô(t, s, z)

∂t
=
∂a(t, s)

∂t
σA− +

∂b(t, s)

∂t
σB− +

∂f(t, s)

∂t
σAz σ

B
− +

∂g(t, s)

∂t
σA−σ

B
z

+ ip(t, s, t)zt + i

(∫ t

0

ds′
∂p(t, s, s′)

∂t
zs′

)
σA−σ

B
− ,

while the right-hand side (RHS) of Eq. (6.26) is composed of the following commu-

tators:

[
−iωA

2
σAz , Ô(t, s, z)] = iωA[a(t, s)σA− + g(t, s)σA−σ

B
z + i

(∫ t

0

ds′p(t, s, s′)zs′

)
σA−σ

B
− ],

[
−iωB

2
σBz , Ô(t, s, z)] = iωB[b(t, s)σB− + f(t, s)σAz σ

B
− + i

(∫ t

0

ds′p(t, s, s′)zs′

)
σA−σ

B
− ],

[Lzt, Ô(t, s, z)] = 2zt[f(t, s) + κg(t, s)],

−[σA+Ō(t, z), Ô(t, s, z)] = A(t)[a(t, s)σA− + g(t, s)σA−σ
B
z ]

−B(t)[a(t, s)σAz σ
B
− + g(t, s)σB− ]

+ F (t)[a(t, s)σAz σ
B
− + g(t, s)σB− ]

+G(t)[a(t, s)σA−σ
B
z + g(t, s)σA−

+ (b(t, s) + f(t, s))(σB− + σAz σ
B
−)]

+ i(A(t) +G(t))

(∫ t

0

ds′p(t, s, s′)zs′

)
σA−σ

B
−

− i
∫ t

0

ds′P (t, s′)zs′ [g(t, s)− a(t, s)]σA−σ
B
− ,
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−κ[σB+Ō(t, z), Ô(t, s, z)] = −κA(t)[f(t, s)σA− + b(t, s)σA−σ
B
z ]

+ κB(t)[b(t, s)σB− + f(t, s)σAz σ
B
− ]

+ κF (t)[(a(t, s) + g(t, s))(σA− + σA−σ
B
z )]

b(t, s)σAz σ
B
− + f(t, s)σB− ]

+ κG(t)[b(t, s)σA−σ
B
z + f(t, s)σA−]

+ iκ(B(t) + F (t))

∫ t

0

ds′p(t, s, s′)zs′σ
A
−σ

B
−

+ iκ

(∫ t

0

ds′P (t, s′)zs′

)
[b(t, s)− f(t, s)]σA−σ

B
− ,

as well as

−L† δŌ(t, z)

δzs
= −(σA+ + κσB+)

δ[i
∫ t

0
ds′P (t, s′)zs′ ]

δzs
σA−σ

B
−

= −iP (t, s)[
1

2
(σAz σ

B
− + σB−) +

κ

2
(σA− + σA−σ

B
z )].

By equating the LHS with the RHS, we obtain the following partial differential equa-

tions for the coefficient functions a(t, s), b(t, s), f(t, s), g(t, s) and p(t, s, s′):

∂a(t, s)

∂t
= iωAa(t, s) + A(t)a(t, s) +G(t)g(t, s)

+ κF (t)[a(t, s) + g(t, s)] + κ[G(t)− A(t)]f(t, s)− iκ

2
P (t, s), (6.29)

∂b(t, s)

∂t
= iωBb(t, s) + κB(t)b(t, s) + κF (t)f(t, s)

+G(t)[b(t, s) + f(t, s)] + [F (t)−B(t)]g(t, s)− i

2
P (t, s), (6.30)
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∂f(t, s)

∂t
= iωBf(t, s) + κF (t)b(t, s) + κB(t)f(t, s)

+G(t)[b(t, s) + f(t, s)] + [F (t)−B(t)]a(t, s)− i

2
P (t, s), (6.31)

∂g(t, s)

∂t
= iωAg(t, s) +G(t)a(t, s) + A(t)g(t, s)

+ κF (t)[a(t, s) + g(t, s)] + κ[G(t)− A(t)]b(t, s)− iκ

2
P (t, s), (6.32)

∂p(t, s, s′)

∂t
= i(ωA + ωB)p(t, s, s′) + [A(t) +G(t) + κB(t) + κF (t)]p(t, s, s′)

+ P (t, s′)[a(t, s)− g(t, s) + κb(t, s)− κf(t, s)], (6.33)

as well as the boundary condition

p(t, s, t) = −2if(t, s)− 2iκg(t, s). (6.34)

We also deduce the initial conditions a(s, s) = 1, b(s, s) = κ, and f(s, s) = g(s, s) =

p(s, s, s′) = 0 from the fact that Ô(s, s, z) = L.

Eqs. (6.29-6.33) are the required exact equations that govern the O-operator

evolution and, in principle, allow us to numerically solve the QSD equation. We now

consider the bath correlation function to be an Ornstein-Uhlenbeck process such that

α(t, s) = γ
2
e−γ|t−s|, which facilitates a set of simpler ordinary differential equations
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from the above Eqs. (6.29-6.33), as presented in Eq. (9). For instance, we have

∂A(t)

∂t
=

∂

∂t

∫ t

0

dsα(t, s)a(t, s)

= α(t, t)a(t, t) +

∫ t

0

ds
∂α(t, s)

∂t
a(t, s) +

∫ t

0

dsα(t, s)
∂a(t, s)

dt

=
γ

2
− γ

∫ t

0

dsα(t, s)a(t, s) +

∫ t

0

dsα(t, s)[iωAa(t, s) + A(t)a(t, s)

+G(t)g(t, s) + κF (t)(a(t, s) + g(t, s)) + κ(G(t)− A(t))f(t, s)− iκ

2
P (t, s)]

=
γ

2
− γA(t) + iωAA(t) + A2(t) +G2(t) + κF (t)G(t)− iκ

2
Q(t), (6.35)

where Q(t) ≡
∫ t

0
dsα(t, s)P (t, s). It is noted that the initial condition a(s, s) = 1 has

been used. Applying a similar derivation, we also have

∂B(t)

∂t
=
γκ

2
− γB(t) + iωBB(t) + κB2(t) + κF 2(t) + 2G(t)F (t)− i

2
Q(t), (6.36)

∂F (t)

∂t
=− γF (t) + iωBF (t) + 2κB(t)F (t) +B(t)G(t) + F (t)G(t)

+ A(t)F (t)− A(t)B(t)− i

2
Q(t), (6.37)

∂G(t)

∂t
=− γG(t) + iωAG(t) + 2A(t)G(t) + κA(t)F (t) + κF (t)G(t)

+ κB(t)G(t)− κA(t)B(t)− iκ

2
Q(t), (6.38)

and

∂P (t, s′)

∂t
= −γP (t, s′) + i(ωA + ωB)P (t, s′) + [2A(t) + 2κB(t)]P (t, s′). (6.39)



101

By the boundary condition in Eq. (6.34) and the definitions of P (t, s′), F (t), and G(t),

it is found P (t, t) = −2iF (t)− 2iκG(t) and the solution of Eq. (6.39) is Eq. (5.25).

To construct a closed group of differential equations for Eqs. (6.35-6.38), we

derive the ordinary differential equation for Q(t) using Eq. (6.39):

∂Q(t)

∂t
=

∂

∂t

∫ t

0

ds′α(t, s′)P (t, s′)

= α(t, t)P (t, t) +

∫ t

0

ds′
∂α(t, s′)

∂t
P (t, s′) +

∫ t

0

ds′α(t, s)
∂P (t, s′)

dt

=
γ

2
[−2iF (t)− 2iκG(t)]− γ

∫ t

0

ds′α(t, s′)P (t, s′)

+

∫ t

0

ds′α(t, s′)[−γP (t, s′) + i(ωA + ωB)P (t, s′) + (2A(t) + 2κB(t))P (t, s′)]

= −iγ[F (t) + κG(t)]− 2γQ(t) + i(ωA + ωB)Q(t) + [2A(t) + 2κB(t)]Q(t).

(6.40)

By definition, the initial conditions for the coefficients of Ō(t, z) are A(0) = B(0) =

F (0) = G(0) = Q(0) = 0.
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